5 research outputs found
Fatores determinantes da distribuição de aves no interflúvio Purus-Madeira
Studies addressing deterministic and stochastic processes that effect changes in
species composition among sites (beta diversity) have focused, for the most part, on
sessile organisms. These are highly susceptible to random dispersal processes,
confirming neutral theory assumptions. At first glance, birds would appear to have
high dispersal ability. However, in Amazonian forests most birds are extremely
sedentary, with restricted distributions, often limited by large rivers. In this study, we
evaluated the environmental effects (palm species composition) relative to
geographical distances between sites, as factors related differences in forest bird
species composition. We sampled 11 sites in upland forest, separated from one
another by 60 km, covering a 670 km extension in the Purus-Madeira interfluve of
Western Amazon, Brazil. Similarity in bird assemblage was significantly correlated
with palm species composition. Understory and canopy birds assemblages showed
similar correlation with palm species composition. When the effect of palm species
composition was controlled, distance was not a good indicator of changes in the bird
community. Our results suggest that, in this region and at this spatial scale, birds are
not limited by geographical distance and can disperse throughout the region studied.
Nevertheless, they are not uniformly distributed which can best be explained by
environmental variation, represented here by palm species composition. Although
our results indicate that geographic distance has no effect on changes in bird
composition, we emphasize that studies on a larger spatial scale could help to
understand dispersal limitation effects in tropical Amazonian forest bird composition.Até o presente, estudos abordando fatores determinísticos e estocásticos que
afetam mudanças na composição de espécies entre locais enfocaram, em geral,
organismos sésseis. Esses organismos são especialmente suscetíveis a processos
aleatórios de dispersão, corroborando premissas da teoria neutra. As aves,
aparentemente, apresentam boa capacidade de dispersão. No entanto, em florestas
amazônicas, muitas espécies de aves são extremamente sedentárias e apresentam
distribuição restrita, tipicamente limitada por grandes rios. Neste estudo avaliamos a
importância de efeitos ambientais, medidos pela composição de espécies de
palmeiras, relativos aos efeitos da distância geográfica, como fatores geradores de
diferenças na composição de aves amazônicas. Nós amostramos 11 localidades em
uma floresta de terra firme, distantes aproximadamente 60 km entre si, cobrindo uma
extensão de 670 km, no interflúvio Purus-Madeira, Amazônia brasileira. A
similaridade das assembleias de aves foi significativamente correlacionada com a
composição de palmeiras. Aves de sub-bosque e aves de dossel, analisadas
separadamente, também apresentaram forte correlação com a composição de
palmeiras. Com o efeito ambiental controlado, a distância geográfica não foi um bom
indicador de mudanças na avifauna na área de estudo, não explicando a ocorrência
de espécies de nenhum dos grupos de aves. Os resultados sugerem que, na escala
espacial e na região deste estudo, as aves não são limitadas pela distância
geográfica entre as localidades, podendo se dispersar por toda extensão da área
estudada. No entanto, a composição de aves muda entre as localidades amostradas
e essas mudanças podem ser melhor explicadas pela variação ambiental,
representada pela composição de palmeiras. Embora nossos resultados indiquem
que a distância geográfica não tenha efeito sobre as mudanças na composição de
aves, enfatizamos que estudos em uma escala maior poderão ajudar a entender os
efeitos da limitação de dispersão sobre a composição de aves florestais amazônicas
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost