2,680 research outputs found

    Determining efficient temperature sets for the simulated tempering method

    Full text link
    In statistical physics, the efficiency of tempering approaches strongly depends on ingredients such as the number of replicas RR, reliable determination of weight factors and the set of used temperatures, TR={T1,T2,,TR}{\mathcal T}_R = \{T_1, T_2, \ldots, T_R\}. For the simulated tempering (SP) in particular -- useful due to its generality and conceptual simplicity -- the latter aspect (closely related to the actual RR) may be a key issue in problems displaying metastability and trapping in certain regions of the phase space. To determine TR{\mathcal T}_R's leading to accurate thermodynamics estimates and still trying to minimize the simulation computational time, here it is considered a fixed exchange frequency scheme for the ST. From the temperature of interest T1T_1, successive TT's are chosen so that the exchange frequency between any adjacent pair TrT_r and Tr+1T_{r+1} has a same value ff. By varying the ff's and analyzing the TR{\mathcal T}_R's through relatively inexpensive tests (e.g., time decay toward the steady regime), an optimal situation in which the simulations visit much faster and more uniformly the relevant portions of the phase space is determined. As illustrations, the proposal is applied to three lattice models, BEG, Bell-Lavis, and Potts, in the hard case of extreme first-order phase transitions, always giving very good results, even for R=3R=3. Also, comparisons with other protocols (constant entropy and arithmetic progression) to choose the set TR{\mathcal T}_R are undertaken. The fixed exchange frequency method is found to be consistently superior, specially for small RR's. Finally, distinct instances where the prescription could be helpful (in second-order transitions and for the parallel tempering approach) are briefly discussed.Comment: 10 pages, 14 figure

    Quantum effective force in an expanding infinite square-well potential and Bohmian perspective

    Full text link
    The Schr\"{o}dinger equation is solved for the case of a particle confined to a small region of a box with infinite walls. If walls of the well are moved, then, due to an effective quantum nonlocal interaction with the boundary, even though the particle is nowhere near the walls, it will be affected. It is shown that this force apart from a minus sign is equal to the expectation value of the gradient of the quantum potential for vanishing at the walls boundary condition. Variation of this force with time is studied. A selection of Bohmian trajectories of the confined particle is also computed.Comment: 7 figures, Accepted by Physica Script

    Drugs and lifestyle for the treatment and prevention of coronary artery disease: comparative analysis of the scientific basis

    Get PDF
    In this article, we compare two strategies for atherosclerosis treatment: drugs and healthy lifestyle. Statins are the principal drugs used for the treatment of atherosclerosis. Several secondary prevention studies have demonstrated that statins can significantly reduce cardiovascular events including coronary death, the need for surgical revascularization, stroke, total mortality, as well as fatal and non-fatal myocardial infarction. These results were observed in both men and women, the elderly, smokers and non-smokers, diabetics and hypertensives. Primary prevention studies yielded similar results, although total mortality was not affected. Statins also induce atheroma regression and do not cause cancer. However, many unresolved issues remain, such as partial risk reduction, costs, several potential side effects, and long-term use by young patients. Statins act mainly as lipid-lowering drugs but pleiotropic actions are also present. Healthy lifestyle, on the other hand, is effective and inexpensive and has no harmful effects. Five items are associated with lower cardiac risk: non-smoking, BMI ≤25, regular exercise (30 min/day), healthy diet (fruits, vegetables, low-saturated fat, and 5-30 g alcohol/day). Nevertheless, there are difficulties in implementing these measures both at the individual and population levels. Changes in behavior require multidisciplinary care, including medical, nutritional, and psychological counseling. Participation of the entire society is required for such implementation, i.e., universities, schools, media, government, and medical societies. Although these efforts represent a major challenge, such a task must be faced in order to halt the atherosclerosis epidemic that threatens the world
    corecore