12 research outputs found

    Taurine alleviates Streptococcus uberis-induced inflammation by activating autophagy in mammary epithelial cells

    Get PDF
    Streptococcus uberis infection can cause serious inflammation and damage to mammary epithelial cells and tissues that can be significantly alleviated by taurine. Autophagy plays an important role in regulating immunity and clearing invasive pathogens and may be regulated by taurine. However, the relationships between taurine, autophagy, and S. uberis infection remain unclear. Herein, we demonstrate that taurine augments PTEN activity and inhibits Akt/mTOR signaling, which decreases phosphorylation of ULK1 and ATG13 by mTOR and activates autophagy. Activating autophagy accelerates the degradation of intracellular S. uberis, reduces intracellular bacterial load, inhibits over-activation of the NF-ÎşB pathway, and alleviates the inflammation and damage caused by S. uberis infection. This study increases our understanding of the mechanism through which taurine regulates autophagy and is the first to demonstrate the role of autophagy in S. uberis infected MAC-T cells. Our study also provides a theoretical basis for employing nutritional elements (taurine) to regulate innate immunity and control S. uberis infection. It also provides theoretical support for the development of prophylactic strategies for this important pathogen

    Molecular epidemiology and antimicrobial resistance of outbreaks of Klebsiella pneumoniae clinical mastitis in Chinese dairy farms

    Get PDF
    Klebsiella pneumoniae is an opportunistic pathogen that causes serious infections in humans and animals. However, the availability of epidemiological information on clinical mastitis due to K. pneumoniae is limited. To acquire new information regarding K. pneumoniae mastitis, data were mined about K. pneumoniae strains on dairy cattle farms (farms A to H) in 7 Chinese provinces in 2021. Hypermucoviscous strains of K. pneumoniae were obtained by the string test. MICs of antimicrobial agents were determined via the broth microdilution method. Ten antimicrobial resistance genes and virulence genes were identified by PCR. The prevalence of K. pneumoniae was 35.91% (65/181), and 100% of the bacteria were sensitive to enrofloxacin. Nine antimicrobial resistance genes and virulence genes were identified and compared among farms. The hypermucoviscous phenotype was present in 94.44% of isolates from farm B, which may be a function of the rmpA virulence gene. Based on these data, the multidrug-resistant strains SD-14 and HB-21 were chosen and sequenced. Genotypes were assayed for K. pneumoniae isolates from different countries and different hosts using multilocus sequence typing (MLST). Ninety-four sequence types (STs) were found, and 6 STs present a risk for spreading in specific regions. Interestingly, ST43 was observed in bovine isolates for the first time. Our study partially reveals the current distribution characteristics of bovine K. pneumoniae in China and may provide a theoretical basis for the prevention and treatment of bovine K. pneumoniae mastitis

    TLR2 Signaling Pathway Combats Streptococcus uberis Infection by Inducing Mitochondrial Reactive Oxygen Species Production

    No full text
    Mastitis caused by Streptococcus uberis (S. uberis) is a common and difficult-to-cure clinical disease in dairy cows. In this study, the role of Toll-like receptors (TLRs) and TLR-mediated signaling pathways in mastitis caused by S. uberis was investigated using mouse models and mammary epithelial cells (MECs). We used S. uberis to infect mammary glands of wild type, TLR2−/− and TLR4−/− mice and quantified the adaptor molecules in TLR signaling pathways, proinflammatory cytokines, tissue damage, and bacterial count. When compared with TLR4 deficiency, TLR2 deficiency induced more severe pathological changes through myeloid differentiation primary response 88 (MyD88)-mediated signaling pathways during S. uberis infection. In MECs, TLR2 detected S. uberis infection and induced mitochondrial reactive oxygen species (mROS) to assist host in controlling the secretion of inflammatory factors and the elimination of intracellular S. uberis. Our results demonstrated that TLR2-mediated mROS has a significant effect on S. uberis-induced host defense responses in mammary glands as well as in MECs

    Robustness Assessment of Wind Power Generation Considering Rigorous Security Constraints for Power System: A Hybrid RLO-IGDT Approach

    No full text
    Fossil fuel depletion and environmental pollution problems promote development of renewable energy (RE) globally. With increasing penetration of RE, operation security and economy of power systems (PS) are greatly impacted by fluctuation and intermittence of renewable power. In this paper, information gap decision theory (IGDT) is adapted to handle uncertainty of wind power generation. Based on conventional IGDT method, linear regulation strategy (LRS) and robust linear optimization (RLO) method are integrated to reformulate the model for rigorously considering security constraints. Then a robustness assessment method based on hybrid RLO-IGDT approach is proposed for analyzing robustness and economic performance of PS. Moreover, a risk-averse linearization method is adapted to convert the proposed assessment model into a mixed integer linear programming (MILP) problem for convenient optimization without robustness loss. Finally, results of case studies validate superiority of proposed method in guaranteeing operation security rigorously and effectiveness in assessment of RSR for PS without overestimation

    Modeling green roofs’ cooling effect in high-density urban areas based on law of diminishing marginal utility of the cooling efficiency: a case study of Xiamen Island, China

    No full text
    There is in general good awareness of the potential role of green roofs to regulate urban thermal environments, but a lack of effective spatial modeling of this cooling effect for a given roof greening scheme at the city scale. This study proposes a simplified and feasible approach to simulate the cooling effect provided by green roofs as a mitigation option to combat urban heat island effects in high-density urban areas. In this study, we established a spatial model of the cooling effect of green roofs, which integrated remote sensing methods and a statistical model based on the law of diminishing marginal utility of the cooling efficiency of green roofs (DMUCE) deduced from previous studies. A case study in Xiamen City, China demonstrates the applicability and implications of the model. Our modeling clearly simulated the size and strength of the urban cool island and its variation under different green roof scenarios. We found that green roofs play an important part in moderating the thermal environment in areas where larger green spaces and waterbodies are largely absent. When the proportion of green roofs is implemented at scale, roofs that are only partly green can also create some extra cool islands (not merely normal islands) in high-density urban areas, equivalent to small green spaces and waterbodies. The sensitivity analysis of the cooling effect indicated that the maximum potential benefit of heat island reduction ranged from 4.04 km2 to 9.75 km2 when the coverage of green roofs was extended to the entire Xiamen Island. Besides, our results suggested that all proposed strategies would not remarkably moderate the thermal environment in the north of Xiamen Island, where urban planners should pay more attention in the future

    Lsr operon is associated with AI-2 transfer and pathogenicity in avian pathogenic Escherichia coli

    No full text
    International audienceAbstractThe function of Autoinducer-2 (AI-2) which acts as the signal molecule of LuxS-mediated quorum sensing, is regulated through the lsr operon (which includes eight genes: lsrK, lsrR, lsrA, lsrC, lsrD, lsrB, lsrF, and lsrG). However, the functions of the lsr operon remain unclear in avian pathogenic Escherichia coli (APEC), which causes severe respiratory and systemic diseases in poultry. In this study, the presence of the lsr operon in 60 APEC clinical strains (serotypes O1, O2, and O78) was investigated and found to be correlated with serotype and has the highest detection rate in O78. The AI-2 binding capacity of recombinant protein LsrB of APEC (APEC-LsrB) was verified and was found to bind to AI-2 in vitro. In addition, the lsr operon was mutated in an APEC strain (APEC94Δlsr(Cm)) and the mutant was found to be defective in motility and AI-2 uptake. Furthermore, deletion of the lsr operon attenuated the virulence of APEC, with the LD50 of APEC94Δlsr(Cm) decreasing 294-fold compared with wild-type strain APEC94. The bacterial load in the blood, liver, spleen, and kidneys of ducks infected with APEC94Δlsr(Cm) decreased significantly (p < 0.0001). The results of transcriptional analysis showed that 62 genes were up-regulated and 415 genes were down-regulated in APEC94Δlsr(Cm) compared with the wild-type strain and some of the down-regulated genes were associated with the virulence of APEC. In conclusion, our study suggests that lsr operon plays a role in the pathogenesis of APEC
    corecore