20,319 research outputs found

    Thermodynamic Properties of Rashba Spin-Orbit-Coupled Fermi Gas

    Get PDF
    We investigate the thermodynamic properties of a superfluid Fermi gas subject to Rashba spin-orbit coupling and effective Zeeman field. We adopt a T-matrix scheme that takes beyond-mean-field effects, which are important for strongly interacting systems, into account. We focus on the calculation of two important quantities: the superfluid transition temperature and the isothermal compressibility. Our calculation shows very distinct influences of the out-of-plane and the in-plane Zeeman fields on the Fermi gas. We also confirm that the in-plane Zeeman field induces a Fulde-Ferrell superfluid below the critical temperature and an exotic finite-momentum pseudo-gap phase above the critical temperature.Comment: 8 pages, 9 figure

    Keyword Search on RDF Graphs - A Query Graph Assembly Approach

    Full text link
    Keyword search provides ordinary users an easy-to-use interface for querying RDF data. Given the input keywords, in this paper, we study how to assemble a query graph that is to represent user's query intention accurately and efficiently. Based on the input keywords, we first obtain the elementary query graph building blocks, such as entity/class vertices and predicate edges. Then, we formally define the query graph assembly (QGA) problem. Unfortunately, we prove theoretically that QGA is a NP-complete problem. In order to solve that, we design some heuristic lower bounds and propose a bipartite graph matching-based best-first search algorithm. The algorithm's time complexity is O(k2lâ‹…l3l)O(k^{2l} \cdot l^{3l}), where ll is the number of the keywords and kk is a tunable parameter, i.e., the maximum number of candidate entity/class vertices and predicate edges allowed to match each keyword. Although QGA is intractable, both ll and kk are small in practice. Furthermore, the algorithm's time complexity does not depend on the RDF graph size, which guarantees the good scalability of our system in large RDF graphs. Experiments on DBpedia and Freebase confirm the superiority of our system on both effectiveness and efficiency

    Effective p-wave interaction and topological superfluids in s-wave quantum gases

    Get PDF
    P-wave interaction in cold atoms may give rise to exotic topological superfluids. However, the realization of p-wave interaction in cold atom system is experimentally challenging. Here we propose a simple scheme to synthesize effective pp-wave interaction in conventional ss-wave interacting quantum gases. The key idea is to load atoms into spin-dependent optical lattice potential. Using two concrete examples involving spin-1/2 fermions, we show how the original system can be mapped into a model describing spinless fermions with nearest neighbor p-wave interaction, whose ground state can be a topological superfluid that supports Majorana fermions under proper conditions. Our proposal has the advantage that it does not require spin-orbit coupling or loading atoms onto higher orbitals, which is the key in earlier proposals to synthesize effective pp-wave interaction in ss-wave quantum gases, and may provide a completely new route for realizing pp-wave topological superfluids.Comment: 5 pages, 4 figure

    Field-induced topological pair-density wave states in a multilayer optical lattice

    Full text link
    We study the superfluid phases of a Fermi gas in a multilayer optical lattice system in the presence of out-of-plane Zeeman field, as well as spin-orbit (SO) coupling. We show that the Zeeman field combined with the SO coupling leads to exotic topological pair-density wave (PDW) phases in which different layers possess different superfluid order parameters, even though each layer experiences the same Zeeman field and the SO coupling. We elucidate the mechanism of the emerging PDW phases, and characterize their topological properties by calculating the associated Chern numbers.Comment: 7 pages, 6 figures, accepted by Phys. Rev.
    • …
    corecore