111 research outputs found
Buffer-Aided Relaying with Adaptive Link Selection - Fixed and Mixed Rate Transmission
We consider a simple network consisting of a source, a half-duplex DF relay
with a buffer, and a destination. We assume that the direct source-destination
link is not available and all links undergo fading. We propose two new
buffer-aided relaying schemes. In the first scheme, neither the source nor the
relay have CSIT, and consequently, both nodes are forced to transmit with fixed
rates. In contrast, in the second scheme, the source does not have CSIT and
transmits with fixed rate but the relay has CSIT and adapts its transmission
rate accordingly. In the absence of delay constraints, for both fixed rate and
mixed rate transmission, we derive the throughput-optimal buffer-aided relaying
protocols which select either the source or the relay for transmission based on
the instantaneous SNRs of the source-relay and the relay-destination links. In
addition, for the delay constrained case, we develop buffer-aided relaying
protocols that achieve a predefined average delay. Compared to conventional
relaying protocols, which select the transmitting node according to a
predefined schedule independent of the link instantaneous SNRs, the proposed
buffer-aided protocols with adaptive link selection achieve large performance
gains. In particular, for fixed rate transmission, we show that the proposed
protocol achieves a diversity gain of two as long as an average delay of more
than three time slots can be afforded. Furthermore, for mixed rate transmission
with an average delay of time slots, a multiplexing gain of
is achieved. Hence, for mixed rate transmission, for
sufficiently large average delays, buffer-aided half-duplex relaying with and
without adaptive link selection does not suffer from a multiplexing gain loss
compared to full-duplex relaying.Comment: IEEE Transactions on Information Theory. (Published
Outage rates and outage durations of opportunistic relaying systems
Opportunistic relaying is a simple yet efficient cooperation scheme that
achieves full diversity and preserves the spectral efficiency among the
spatially distributed stations. However, the stations' mobility causes temporal
correlation of the system's capacity outage events, which gives rise to its
important second-order outage statistical parameters, such as the average
outage rate (AOR) and the average outage duration (AOD). This letter presents
exact analytical expressions for the AOR and the AOD of an opportunistic
relaying system, which employs a mobile source and a mobile destination
(without a direct path), and an arbitrary number of (fixed-gain
amplify-and-forward or decode-and-forward) mobile relays in Rayleigh fading
environment
Adaptive Mode Selection for Bidirectional Relay Networks -- Fixed Rate Transmission
In this paper, we consider the problem of sum throughput maximization for
bidirectional relay networks with block fading. Thereby, user 1 and user 2
exchange information only via a relay node, i.e., a direct link between both
users is not present. We assume that channel state information at the
transmitter (CSIT) is not available and/or only one coding and modulation
scheme is used at the transmitters due to complexity constraints. Thus, the
nodes transmit with a fixed predefined rate regardless of the channel state
information (CSI). In general, the nodes in the network can assume one of three
possible states in each time slot, namely the transmit, receive, and silent
state. Most of the existing protocols assume a fixed schedule for the sequence
of the states of the nodes. In this paper, we abandon the restriction of having
a fixed and predefined schedule and propose a new protocol which, based on the
CSI at the receiver (CSIR), selects the optimal states of the nodes in each
time slot such that the sum throughput is maximized. To this end, the relay has
to be equipped with two buffers for storage of the information received from
the two users. Numerical results show that the proposed protocol significantly
outperforms the existing protocols.Comment: IEEE ICC 201
Buffer-Aided Relaying with Adaptive Link Selection
In this paper, we consider a simple network consisting of a source, a
half-duplex decode-and-forward relay, and a destination. We propose a new
relaying protocol employing adaptive link selection, i.e., in any given time
slot, based on the channel state information of the source-relay and the
relay-destination link a decision is made whether the source or the relay
transmits. In order to avoid data loss at the relay, adaptive link selection
requires the relay to be equipped with a buffer such that data can be queued
until the relay-destination link is selected for transmission. We study both
delay constrained and delay unconstrained transmission. For the delay
unconstrained case, we characterize the optimal link selection policy, derive
the corresponding throughput, and develop an optimal power allocation scheme.
For the delay constrained case, we propose to starve the buffer of the relay by
choosing the decision threshold of the link selection policy smaller than the
optimal one and derive a corresponding upper bound on the average delay.
Furthermore, we propose a modified link selection protocol which avoids buffer
overflow by limiting the queue size. Our analytical and numerical results show
that buffer-aided relaying with adaptive link selection achieves significant
throughput gains compared to conventional relaying protocols with and without
buffers where the relay employs a fixed schedule for reception and
transmission.Comment: IEEE Journal on Selected Areas in Communications; Special Issue on
Theories and Methods for Advanced Wireless Relay
Optimal Power Control for Analog Bidirectional Relaying with Long-Term Relay Power Constraint
Wireless systems that carry delay-sensitive information (such as speech
and/or video signals) typically transmit with fixed data rates, but may
occasionally suffer from transmission outages caused by the random nature of
the fading channels. If the transmitter has instantaneous channel state
information (CSI) available, it can compensate for a significant portion of
these outages by utilizing power allocation. In a conventional dual-hop
bidirectional amplify-and-forward (AF) relaying system, the relay already has
instantaneous CSI of both links available, as this is required for relay gain
adjustment. We therefore develop an optimal power allocation strategy for the
relay, which adjusts its instantaneous output power to the minimum level
required to avoid outages, but only if the required output power is below some
cutoff level; otherwise, the relay is silent in order to conserve power and
prolong its lifetime. The proposed scheme is proven to minimize the system
outage probability, subject to an average power constraint at the relay and
fixed output powers at the end nodes.Comment: conference IEEE Globecom 2013, Atlanta, Georgia, U
- β¦