5 research outputs found

    High-Performance Ultrathin Active Chiral Metamaterials

    No full text
    Ultrathin active chiral metamaterials with dynamically tunable and responsive optical chirality enable new optical sensors, modulators, and switches. Herein, we develop ultrathin active chiral metamaterials of highly tunable chiroptical responses by inducing tunable near-field coupling in the metamaterials and exploit the metamaterials as ultrasensitive sensors to detect trace amounts of solvent impurities. To demonstrate the active chiral metamaterials mediated by tunable near-field coupling, we design moiré chiral metamaterials (MCMs) as model metamaterials, which consist of two layers of identical Au nanohole arrays stacked upon one another in moiré patterns with a dielectric spacer layer between the Au layers. Our simulations, analytical fittings, and experiments reveal that spacer-dependent near-field coupling exists in the MCMs, which significantly enhances the spectral shift and line shape change of the circular dichroism (CD) spectra of the MCMs. Furthermore, we use a silk fibroin thin film as the spacer layer in the MCM. With the solvent-controllable swelling of the silk fibroin thin films, we demonstrate actively tunable near-field coupling and chiroptical responses of the silk-MCMs. Impressively, we have achieved the spectral shift over a wavelength range that is more than one full width at half-maximum and the sign inversion of the CD spectra in a single ultrathin (1/5 of wavelength in thickness) MCM. Finally, we apply the silk-MCMs as ultrasensitive sensors to detect trace amounts of solvent impurities down to 200 ppm, corresponding to an ultrahigh sensitivity of >10<sup>5</sup> nm/refractive index unit (RIU) and a figure of merit of 10<sup>5</sup>/RIU

    Moiré Nanosphere Lithography

    No full text
    We have developed moiré nanosphere lithography (M-NSL), which incorporates in-plane rotation between neighboring monolayers, to extend the patterning capability of conventional nanosphere lithography (NSL). NSL, which uses self-assembled layers of monodisperse micro/nanospheres as masks, is a low-cost, scalable nanofabrication technique and has been widely employed to fabricate various nanoparticle arrays. Combination with dry etching and/or angled deposition has greatly enriched the family of nanoparticles NSL can yield. In this work, we introduce a variant of this technique, which uses sequential stacking of polystyrene nanosphere monolayers to form a bilayer crystal instead of conventional spontaneous self-assembly. Sequential stacking leads to the formation of moiré patterns other than the usually observed thermodynamically stable configurations. Subsequent O<sub>2</sub> plasma etching results in a variety of complex nanostructures. Using the etched moiré patterns as masks, we have fabricated complementary gold nanostructures and studied their optical properties. We believe this facile technique provides a strategy to fabricate complex nanostructures or metasurfaces

    Large-Area Au-Nanoparticle-Functionalized Si Nanorod Arrays for Spatially Uniform Surface-Enhanced Raman Spectroscopy

    No full text
    In this study, large-area hexagonal-packed Si nanorod (SiNR) arrays in conjunction with Au nanoparticles (AuNPs) were fabricated for surface-enhanced Raman spectroscopy (SERS). We have achieved ultrasensitive molecular detection with high reproducibility and spatial uniformity. A finite-difference time-domain simulation suggests that a wide range of three-dimensional electric fields are generated along the surfaces of the SiNR array. With the tuning of the gap and diameter of the SiNRs, the produced long decay length (>130 nm) of the enhanced electric field makes the SERS substrate a zero-gap system for ultrasensitive detection of large biomolecules. In the detection of R6G molecules, our SERS system achieved an enhancement factor of >10<sup>7</sup> with a relative standard deviation as small as 3.9–7.2% over 30 points across the substrate. More significantly, the SERS substrate yielded ultrasensitive Raman signals on long amyloid-β fibrils at the single-fibril level, which provides promising potentials for ultrasensitive detection of amyloid aggregates that are related to Alzheimer’s disease. Our study demonstrates that the SiNRs functionalized with AuNPs may serve as excellent SERS substrates in chemical and biomedical detection

    Exploiting NIR Light-Mediated Surface-Initiated PhotoRAFT Polymerization for Orthogonal Control Polymer Brushes and Facile Postmodification of Complex Architecture through Opaque Barriers

    No full text
    An oxygen-tolerant SI-PhotoRAFT technique has been developed for the efficient synthesis of surface-tethered polymer brushes under low-energy near-infrared (NIR) light. This technique takes advantage of the unique properties of NIR light, in particular enhanced penetration, to effectively prepare polymeric coatings, even through barriers that are opaque to visible light. The NIR-mediated SI-PhotoRAFT polymerization technique was utilized to precisely modulate brush height in direct correlation with the irradiation time. Additionally, this technique facilitated sequential chain extension, enabling the fabrication of block copolymer brushes. Moreover, the incorporation of a photoresponsive monomer, 7-[4-(trifluoromethyl)coumarin]acrylamide [2-(2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)acrylamide, TCAm], within the poly(N,N-dimethylacrylamide) brushes enables orthogonal control over polymerization and cross-linking processes through the use of two different wavelengths (NIR and UV light). When exposed to a UV source (λ = 365 nm, 18.2 mW/cm2), the TCAm undergoes dimerization triggering cross-linking of the grafted brush “arms”. Furthermore, by utilizing the enhanced penetration of NIR light, a polymeric coating was prepared on the inner walls of a tube that was opaque to visible light. Finally, this process is successfully applied to the synthesis of antifouling surfaces on poly(dimethylsiloxane)-coated silicon wafers, leading to inhibition of biofouling

    Three-Dimensional Optothermal Manipulation of Light-Absorbing Particles in Phase-Change Gel Media

    No full text
    Rational manipulation and assembly of discrete colloidal particles into architected superstructures have enabled several applications in materials science and nanotechnology. Optical manipulation techniques, typically operated in fluid media, facilitate the precise arrangement of colloidal particles into superstructures by using focused laser beams. However, as the optical energy is turned off, the inherent Brownian motion of the particles in fluid media impedes the retention and reconfiguration of such superstructures. Overcoming this fundamental limitation, we present on-demand, three-dimensional (3D) optical manipulation of colloidal particles in a phase-change solid medium made of surfactant bilayers. Unlike liquid crystal media, the lack of fluid flow within the bilayer media enables the assembly and retention of colloids for diverse spatial configurations. By utilizing the optically controlled temperature-dependent interactions between the particles and their surrounding media, we experimentally exhibit the holonomic microscale control of diverse particles for repeatable, reconfigurable, and controlled colloidal arrangements in 3D. Finally, we demonstrate tunable light–matter interactions between the particles and 2D materials by successfully manipulating and retaining these particles at fixed distances from the 2D material layers. Our experimental results demonstrate that the particles can be retained for over 120 days without any change in their relative positions or degradation in the bilayers. With the capability of arranging particles in 3D configurations with long-term stability, our platform pushes the frontiers of optical manipulation for distinct applications such as metamaterial fabrication, information storage, and security
    corecore