301 research outputs found
Role of cross-links in bundle formation, phase separation and gelation of long filaments
We predict the thermodynamic and structural behavior of solutions of long
cross-linked filaments. We find that at the mean field level, the entropy of
self-assembled junctions induces an effective attraction between the filaments
that can result in a phase separation into a connected network, in equilibrium
with a dilute phase. A connected network can also be formed in a
non-thermodynamic transition upon increase of the chain, or cross link density,
or with decreasing temperature. For rigid rods, at low temperatures, we predict
a transition from an isotropic network, to anisotropic bundles of rods tightly
bound by cross links, that is triggered by the interplay between the
configurational entropy of the cross-link distribution among the rods, and the
rotational and translational entropy of the rods.Comment: typos and graphics corrected; 6 pages 1 figur
Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source
Some female moths attract male moths by emitting series of pulses of
pheromone filaments propagating downwind. The turbulent nature of the wind
creates a complex flow environment, and causes the filaments to propagate in
the form of patches with varying concentration distributions. Inspired by moth
navigation capabilities, we propose a navigation strategy that enables a flier
to locate a pulsating odor source in a windy environment using a single
threshold-based detection sensor. The strategy is constructed based on the
physical properties of the turbulent flow carrying discrete puffs of odor and
does not involve learning, memory, complex decision making or statistical
methods. We suggest that in turbulent plumes from a pulsating point source, an
instantaneously measurable quantity referred as a "puff crossing time",
improves the success rate as compared to the navigation strategy based on
"internal counter" that does not use this information. Using computer
simulations of fliers navigating in turbulent plumes of the pulsating point
source for varying flow parameters: turbulent intensities, plume meandering and
wind gusts, we obtained trajectories qualitatively resembling male moths
flights towards the pheromone sources. We quantified the probability of a
successful navigation as well as the flight parameters such as the time spent
searching and the total flight time, with respect to different turbulent
intensities, meandering or gusts. The concepts learned using this model may
help to design odor-based navigation of miniature airborne autonomous vehicles
The Immunity of Polymer-Microemulsion Networks
The concept of network immunity, i.e., the robustness of the network
connectivity after a random deletion of edges or vertices, has been
investigated in biological or communication networks. We apply this concept to
a self-assembling, physical network of microemulsion droplets connected by
telechelic polymers, where more than one polymer can connect a pair of
droplets. The gel phase of this system has higher immunity if it is more likely
to survive (i.e., maintain a macroscopic, connected component) when some of the
polymers are randomly degraded. We consider the distribution of the
number of polymers between a pair of droplets, and show that gel immunity
decreases as the variance of increases. Repulsive interactions
between the polymers decrease the variance, while attractive interactions
increase the variance, and may result in a bimodal .Comment: Corrected typo
Physical modelling of multivalent interactions in the nuclear pore complex
In the nuclear pore complex (NPC), intrinsically disordered proteins (FG Nups) along with their interactions with more globular proteins called nuclear transport receptors (NTRs) are vital to the selectivity of transport into and out of the cell nucleus. While such interactions can be modelled at different levels of coarse graining, in-vitro experimental data have been quantitatively described by minimal models that describe FG Nups as cohesive homogeneous polymers and NTRs as uniformly cohesive spheres, where the heterogeneous effects have been smeared out. By definition, these minimal models do not account for the explicit heterogeneities in FG Nup sequences, essentially a string of cohesive and non-cohesive polymer units, and at the NTR surface. Here, we develop computational and analytical models that do take into account such heterogeneity in a minimal fashion, and compare them to experimental data on single-molecule interactions between FG Nups and NTRs. Overall, we find that the heterogeneous nature of FG Nups and NTRs does play a role in determining equilibrium binding properties, but is of much greater significance when it comes to unbinding and binding kinetics. Using our models, we predict how binding equilibria and kinetics depend on the distribution of cohesive blocks in the FG Nup sequences and of the binding pockets at the NTR surface, with multivalency playing a key role. Finally, we observe that single-molecule binding kinetics has a rather minor influence on the diffusion of NTRs in polymer melts consisting of FG-Nup-like sequences
- …