15 research outputs found
ReinterpretedTexture_rendering
This is a web prototype system about a vector point symbol rendering method based on the texture structure. The rendering context is WebGL2, and the base map is presented by Mapbox GL js.
A texel in the texture is a piece of vertex information in the size of 4 Bytes. It contains a pair of coordinates and a color index of one of the vertex of a vector point symbol (organized by one triangle strip). GPU Instancing is used to launch the rendering pipeline. All different symbols can be rendered in one draw call by specifying their layout information about where they lie in the texture. With the help of the built-in variable gl_VertexID and textures' random access feature, vertices can be decoded from the symbol texture.
By using thie method, both the quality of the vector style and the performance of the raster style can be taken to improve the point symbol drawing on maps.</p
ReinterpretedTexture_Prototype
This is a web prototype system about a vector point symbol rendering method based on the texture structure. The rendering context is WebGL2, and the base map is presented by Mapbox GL js.
A texel in the texture is a piece of vertex information in the size of 4 Bytes. It contains a pair of coordinates and a color index of one of the vertex of a vector point symbol (organized by one triangle strip). GPU Instancing is used to launch the rendering pipeline. All different symbols can be rendered in one draw call by specifying their layout information about where they lie in the texture. With the help of the built-in variable gl_VertexID and textures' random access feature, vertices can be decoded from the symbol texture.
By using thie method, both the quality of the vector style and the performance of the raster style can be taken to improve the point symbol drawing on maps.</p
Image_2_Identification of fatty acid signature to predict prognosis and guide clinical therapy in patients with ovarian cancer.tif
High-grade serous ovarian cancer (HGSOC) is a heterogeneous cancer characterized by high relapse rate. Approximately 80% of women are diagnosed with late-stage disease, and 15–25% of patients experience primary treatment resistance. Ovarian cancer brings tremendous suffering and is the most malignant type in all gynecologic malignancies. Metabolic reprogramming in tumor microenvironment (TME), especially fatty acid metabolism, has been identified to play a crucial role in cancer prognosis. Yet, the underlying mechanism of fatty acid metabolism on ovarian cancer progression is severely understudied. Recently, studies have demonstrated the role of fatty acid metabolism reprogramming in immune cells, but their roles on cancer cell metastasis and cancer immunotherapy response are poorly characterized. Here, we reported that the fatty acid–related genes are aberrantly varied between ovarian cancer and normal samples. Using samples in publicly databases and bio-informatic analyses with fatty acid–related genes, we disentangled that cancer cases can be classified into high- and low-risk groups related with prognosis. Furthermore, the nomogram model was constructed to predict the overall survival. Additionally, we reported that different immune cells infiltration was presented between groups, and immunotherapy response differed in two groups. Results showed that our signature may have good prediction value on immunotherapy efficacy, especially for anti–PD-1 and anti–CTLA-4. Our study systematically marked the critical association between cancer immunity in TME and fatty acid metabolism, and bridged immune phenotype and metabolism programming in tumors, thereby constructed the metabolic-related prognostic model and help to understand the underlying mechanism of immunotherapy response.</p
Image_8_Identification of fatty acid signature to predict prognosis and guide clinical therapy in patients with ovarian cancer.tif
High-grade serous ovarian cancer (HGSOC) is a heterogeneous cancer characterized by high relapse rate. Approximately 80% of women are diagnosed with late-stage disease, and 15–25% of patients experience primary treatment resistance. Ovarian cancer brings tremendous suffering and is the most malignant type in all gynecologic malignancies. Metabolic reprogramming in tumor microenvironment (TME), especially fatty acid metabolism, has been identified to play a crucial role in cancer prognosis. Yet, the underlying mechanism of fatty acid metabolism on ovarian cancer progression is severely understudied. Recently, studies have demonstrated the role of fatty acid metabolism reprogramming in immune cells, but their roles on cancer cell metastasis and cancer immunotherapy response are poorly characterized. Here, we reported that the fatty acid–related genes are aberrantly varied between ovarian cancer and normal samples. Using samples in publicly databases and bio-informatic analyses with fatty acid–related genes, we disentangled that cancer cases can be classified into high- and low-risk groups related with prognosis. Furthermore, the nomogram model was constructed to predict the overall survival. Additionally, we reported that different immune cells infiltration was presented between groups, and immunotherapy response differed in two groups. Results showed that our signature may have good prediction value on immunotherapy efficacy, especially for anti–PD-1 and anti–CTLA-4. Our study systematically marked the critical association between cancer immunity in TME and fatty acid metabolism, and bridged immune phenotype and metabolism programming in tumors, thereby constructed the metabolic-related prognostic model and help to understand the underlying mechanism of immunotherapy response.</p
Table_4_Identification of fatty acid signature to predict prognosis and guide clinical therapy in patients with ovarian cancer.docx
High-grade serous ovarian cancer (HGSOC) is a heterogeneous cancer characterized by high relapse rate. Approximately 80% of women are diagnosed with late-stage disease, and 15–25% of patients experience primary treatment resistance. Ovarian cancer brings tremendous suffering and is the most malignant type in all gynecologic malignancies. Metabolic reprogramming in tumor microenvironment (TME), especially fatty acid metabolism, has been identified to play a crucial role in cancer prognosis. Yet, the underlying mechanism of fatty acid metabolism on ovarian cancer progression is severely understudied. Recently, studies have demonstrated the role of fatty acid metabolism reprogramming in immune cells, but their roles on cancer cell metastasis and cancer immunotherapy response are poorly characterized. Here, we reported that the fatty acid–related genes are aberrantly varied between ovarian cancer and normal samples. Using samples in publicly databases and bio-informatic analyses with fatty acid–related genes, we disentangled that cancer cases can be classified into high- and low-risk groups related with prognosis. Furthermore, the nomogram model was constructed to predict the overall survival. Additionally, we reported that different immune cells infiltration was presented between groups, and immunotherapy response differed in two groups. Results showed that our signature may have good prediction value on immunotherapy efficacy, especially for anti–PD-1 and anti–CTLA-4. Our study systematically marked the critical association between cancer immunity in TME and fatty acid metabolism, and bridged immune phenotype and metabolism programming in tumors, thereby constructed the metabolic-related prognostic model and help to understand the underlying mechanism of immunotherapy response.</p
A reinterpreted-texture strategy for rendering point symbols based on graphics processing unit
The increasing demands of presenting large numbers of points in maps have promoted the progress of rendering point symbols in GPUs. Although the drawing efficiency issue can be handled with texture mapping methods, the rendering quality problem due to the fixed resolution that affects map renders’ visual experiences remains. The method of directly drawing vector paths of a point symbol can be used to satisfy the sharper effect of point symbols. However, it requires high memory cost and affects the drawing efficiency. This paper proposes a point symbol rendering method using the idea of reinterpreted textures. The rendering data used in this method are based on vectors to achieve refined results. Vector properties of symbols are encoded and organized into the texture structure with specific layout schemes. In the rendering phase, an instanced pipeline is launched to accept the texture and decode the required attributes. The proposed method takes advantage of fast access and continuity of textures while retaining geometric transformations. These features allow all symbols to be drawn in one single draw call and rotated or scaled arbitrarily. Experiments on drawing quality and efficiency demonstrate that the proposed method achieves fast and stable performance while maintaining the rendering quality.</p
Table_1_Identification of fatty acid signature to predict prognosis and guide clinical therapy in patients with ovarian cancer.docx
High-grade serous ovarian cancer (HGSOC) is a heterogeneous cancer characterized by high relapse rate. Approximately 80% of women are diagnosed with late-stage disease, and 15–25% of patients experience primary treatment resistance. Ovarian cancer brings tremendous suffering and is the most malignant type in all gynecologic malignancies. Metabolic reprogramming in tumor microenvironment (TME), especially fatty acid metabolism, has been identified to play a crucial role in cancer prognosis. Yet, the underlying mechanism of fatty acid metabolism on ovarian cancer progression is severely understudied. Recently, studies have demonstrated the role of fatty acid metabolism reprogramming in immune cells, but their roles on cancer cell metastasis and cancer immunotherapy response are poorly characterized. Here, we reported that the fatty acid–related genes are aberrantly varied between ovarian cancer and normal samples. Using samples in publicly databases and bio-informatic analyses with fatty acid–related genes, we disentangled that cancer cases can be classified into high- and low-risk groups related with prognosis. Furthermore, the nomogram model was constructed to predict the overall survival. Additionally, we reported that different immune cells infiltration was presented between groups, and immunotherapy response differed in two groups. Results showed that our signature may have good prediction value on immunotherapy efficacy, especially for anti–PD-1 and anti–CTLA-4. Our study systematically marked the critical association between cancer immunity in TME and fatty acid metabolism, and bridged immune phenotype and metabolism programming in tumors, thereby constructed the metabolic-related prognostic model and help to understand the underlying mechanism of immunotherapy response.</p
Table_3_Identification of fatty acid signature to predict prognosis and guide clinical therapy in patients with ovarian cancer.docx
High-grade serous ovarian cancer (HGSOC) is a heterogeneous cancer characterized by high relapse rate. Approximately 80% of women are diagnosed with late-stage disease, and 15–25% of patients experience primary treatment resistance. Ovarian cancer brings tremendous suffering and is the most malignant type in all gynecologic malignancies. Metabolic reprogramming in tumor microenvironment (TME), especially fatty acid metabolism, has been identified to play a crucial role in cancer prognosis. Yet, the underlying mechanism of fatty acid metabolism on ovarian cancer progression is severely understudied. Recently, studies have demonstrated the role of fatty acid metabolism reprogramming in immune cells, but their roles on cancer cell metastasis and cancer immunotherapy response are poorly characterized. Here, we reported that the fatty acid–related genes are aberrantly varied between ovarian cancer and normal samples. Using samples in publicly databases and bio-informatic analyses with fatty acid–related genes, we disentangled that cancer cases can be classified into high- and low-risk groups related with prognosis. Furthermore, the nomogram model was constructed to predict the overall survival. Additionally, we reported that different immune cells infiltration was presented between groups, and immunotherapy response differed in two groups. Results showed that our signature may have good prediction value on immunotherapy efficacy, especially for anti–PD-1 and anti–CTLA-4. Our study systematically marked the critical association between cancer immunity in TME and fatty acid metabolism, and bridged immune phenotype and metabolism programming in tumors, thereby constructed the metabolic-related prognostic model and help to understand the underlying mechanism of immunotherapy response.</p
Image_1_Identification of fatty acid signature to predict prognosis and guide clinical therapy in patients with ovarian cancer.tif
High-grade serous ovarian cancer (HGSOC) is a heterogeneous cancer characterized by high relapse rate. Approximately 80% of women are diagnosed with late-stage disease, and 15–25% of patients experience primary treatment resistance. Ovarian cancer brings tremendous suffering and is the most malignant type in all gynecologic malignancies. Metabolic reprogramming in tumor microenvironment (TME), especially fatty acid metabolism, has been identified to play a crucial role in cancer prognosis. Yet, the underlying mechanism of fatty acid metabolism on ovarian cancer progression is severely understudied. Recently, studies have demonstrated the role of fatty acid metabolism reprogramming in immune cells, but their roles on cancer cell metastasis and cancer immunotherapy response are poorly characterized. Here, we reported that the fatty acid–related genes are aberrantly varied between ovarian cancer and normal samples. Using samples in publicly databases and bio-informatic analyses with fatty acid–related genes, we disentangled that cancer cases can be classified into high- and low-risk groups related with prognosis. Furthermore, the nomogram model was constructed to predict the overall survival. Additionally, we reported that different immune cells infiltration was presented between groups, and immunotherapy response differed in two groups. Results showed that our signature may have good prediction value on immunotherapy efficacy, especially for anti–PD-1 and anti–CTLA-4. Our study systematically marked the critical association between cancer immunity in TME and fatty acid metabolism, and bridged immune phenotype and metabolism programming in tumors, thereby constructed the metabolic-related prognostic model and help to understand the underlying mechanism of immunotherapy response.</p
Image_4_Identification of fatty acid signature to predict prognosis and guide clinical therapy in patients with ovarian cancer.tif
High-grade serous ovarian cancer (HGSOC) is a heterogeneous cancer characterized by high relapse rate. Approximately 80% of women are diagnosed with late-stage disease, and 15–25% of patients experience primary treatment resistance. Ovarian cancer brings tremendous suffering and is the most malignant type in all gynecologic malignancies. Metabolic reprogramming in tumor microenvironment (TME), especially fatty acid metabolism, has been identified to play a crucial role in cancer prognosis. Yet, the underlying mechanism of fatty acid metabolism on ovarian cancer progression is severely understudied. Recently, studies have demonstrated the role of fatty acid metabolism reprogramming in immune cells, but their roles on cancer cell metastasis and cancer immunotherapy response are poorly characterized. Here, we reported that the fatty acid–related genes are aberrantly varied between ovarian cancer and normal samples. Using samples in publicly databases and bio-informatic analyses with fatty acid–related genes, we disentangled that cancer cases can be classified into high- and low-risk groups related with prognosis. Furthermore, the nomogram model was constructed to predict the overall survival. Additionally, we reported that different immune cells infiltration was presented between groups, and immunotherapy response differed in two groups. Results showed that our signature may have good prediction value on immunotherapy efficacy, especially for anti–PD-1 and anti–CTLA-4. Our study systematically marked the critical association between cancer immunity in TME and fatty acid metabolism, and bridged immune phenotype and metabolism programming in tumors, thereby constructed the metabolic-related prognostic model and help to understand the underlying mechanism of immunotherapy response.</p
