322 research outputs found
Possible High-Energy Neutrino and Photon Signals from Gravitational Wave Bursts due to Double Neutron Star Mergers
As the technology of gravitational-wave and neutrino detectors becomes
increasingly mature, a multi-messenger era of astronomy is ushered in. Advanced
gravitational wave detectors are close to making a ground-breaking discovery of
gravitational wave bursts (GWBs) associated with mergers of double neutron
stars (NS-NS). It is essential to study the possible electromagnetic (EM) and
neutrino emission counterparts of these GWBs. Recent observations and numerical
simulations suggest that at least a fraction of NS-NS mergers may leave behind
a massive millisecond magnetar as the merger product. Here we show that protons
accelerated in the forward shock powered by a magnetar wind pushing the ejecta
launched during the merger process would interact with photons generated in the
dissipating magnetar wind and emit high energy neutrinos and photons. We
estimate the typical energy and fluence of the neutrinos from such a scenario.
We find that PeV neutrinos could be emitted from the shock front as long
as the ejecta could be accelerated to a relativistic speed. The diffuse
neutrino flux from these events, even under the most optimistic scenarios, is
too low to account for the two events announced by the IceCube Collaboration,
but it is only slightly lower than the diffuse flux of GRBs, making it an
important candidate for the diffuse background of PeV neutrinos. The
neutron-pion decay of these events make them a moderate contributor to the
sub-TeV gamma-ray diffuse background.Comment: Accepted for publication in PRD, minor revisio
The Allowed Parameter Space of a Long-lived Neutron Star as the Merger Remnant of GW170817
Due to the limited sensitivity of the current gravitational wave (GW) detectors, the central remnant of the binary neutron star (NS) merger associated with GW170817 remains an open question. In view of the relatively large total mass, it is generally proposed that the merger of GW170817 would lead to a short-lived hypermassive NS or directly produce a black hole (BH). There is no clear evidence to support or rule out a long-lived NS as the merger remnant. Here, we utilize the GW and electromagnetic (EM) signals to comprehensively investigate the parameter space that allows a long-lived NS to survive as the merger remnant of GW170817. We find that for some stiff equations of state, the merger of GW170817 could, in principle, lead to a massive NS, which has a millisecond spin period. The post-merger GW signal could hardly constrain the ellipticity of the NS. If the ellipticity reaches 10−3, in order to be compatible with the multi-band EM observations, the dipole magnetic field of the NS (B p ) is constrained to the magnetar level of ~1014 G. If the ellipticity is smaller than 10−4, B p is constrained to the level of ~109–1011 G. These conclusions weakly depend on the adoption of the NS equation of state
- …