21 research outputs found

### Shrinking Point Bifurcations of Resonance Tongues for Piecewise-Smooth, Continuous Maps

Resonance tongues are mode-locking regions of parameter space in which stable
periodic solutions occur; they commonly occur, for example, near Neimark-Sacker
bifurcations. For piecewise-smooth, continuous maps these tongues typically
have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation
diagrams. We give a symbolic description of a class of "rotational" periodic
solutions that display lens-chain structures for a general $N$-dimensional map.
We then unfold the codimension-two, shrinking point bifurcation, where the
tongues have zero width. A number of codimension-one bifurcation curves emanate
from shrinking points and we determine those that form tongue boundaries.Comment: 27 pages, 6 figure

### Hidden attractors in fundamental problems and engineering models

Recently a concept of self-excited and hidden attractors was suggested: an
attractor is called a self-excited attractor if its basin of attraction
overlaps with neighborhood of an equilibrium, otherwise it is called a hidden
attractor. For example, hidden attractors are attractors in systems with no
equilibria or with only one stable equilibrium (a special case of
multistability and coexistence of attractors). While coexisting self-excited
attractors can be found using the standard computational procedure, there is no
standard way of predicting the existence or coexistence of hidden attractors in
a system. In this plenary survey lecture the concept of self-excited and hidden
attractors is discussed, and various corresponding examples of self-excited and
hidden attractors are considered

### Theory of differential inclusions and its application in mechanics

The following chapter deals with systems of differential equations with
discontinuous right-hand sides. The key question is how to define the solutions
of such systems. The most adequate approach is to treat discontinuous systems
as systems with multivalued right-hand sides (differential inclusions). In this
work three well-known definitions of solution of discontinuous system are
considered. We will demonstrate the difference between these definitions and
their application to different mechanical problems. Mathematical models of
drilling systems with discontinuous friction torque characteristics are
considered. Here, opposite to classical Coulomb symmetric friction law, the
friction torque characteristic is asymmetrical. Problem of sudden load change
is studied. Analytical methods of investigation of systems with such
asymmetrical friction based on the use of Lyapunov functions are demonstrated.
The Watt governor and Chua system are considered to show different aspects of
computer modeling of discontinuous systems

### 2D discontinuous piecewise linear map: Emergence of fashion cycles

We consider a discrete-time version of the continuous-time fashion cycle model introduced in Matsuyama, 1992. Its dynamics are defined by a 2D discontinuous piecewise linear map depending on three parameters. In the parameter space of the map periodicity, regions associated with attracting cycles of different periods are organized in the period adding and period incrementing bifurcation structures. The boundaries of all the periodicity regions related to border collision bifurcations are obtained analytically in explicit form. We show the existence of several partially overlapping period incrementing structures, that is, a novelty for the considered class of maps. Moreover, we show that if the time-delay in the discrete time formulation of the model shrinks to zero, the number of period incrementing structures tends to infinity and the dynamics of the discrete time fashion cycle model converges to those of continuous-time fashion cycle model

### Memory effects on binary choices with impulsive agents: Bistability and a new BCB structure

After the seminal works by Schelling, several authors have considered models representing binary choices by different kinds of agents or groups of people. The role of the memory in these models is still an open research argument, on which scholars are investigating. The dynamics of binary choices with impulsive agents has been represented, in the recent literature, by a one-dimensional piecewise smooth map. Following a similar way of modeling, we assume a memory effect which leads the next output to depend on the present and the last state. This results in a two-dimensional piecewise smooth map with a limiting case given by a piecewise linear discontinuous map, whose dynamics and bifurcations are investigated. The map has a particular structure, leading to trajectories belonging only to a pair of straight lines. The system can have, in general, only attracting cycles, but the related periods and periodicity regions are organized in a complex structure of the parameter space. We show that the period adding structure, characteristic for the one-dimensional case, also persists in the two-dimensional one. The considered cycles have a symbolic sequence which is obtained by the concatenation of the symbolic sequences of cycles, which play the role of basic cycles in the bifurcation structure. Moreover, differently from the one-dimensional case, the coexistence of two attracting cycles is now possible. The bistability regions in the parameter space are investigated, evidencing the role of different kinds of codimension-two bifurcation points, as well as in the phase space and the related basins of attraction are described