52 research outputs found

    GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding

    Full text link
    Learning continuous representations of nodes is attracting growing interest in both academia and industry recently, due to their simplicity and effectiveness in a variety of applications. Most of existing node embedding algorithms and systems are capable of processing networks with hundreds of thousands or a few millions of nodes. However, how to scale them to networks that have tens of millions or even hundreds of millions of nodes remains a challenging problem. In this paper, we propose GraphVite, a high-performance CPU-GPU hybrid system for training node embeddings, by co-optimizing the algorithm and the system. On the CPU end, augmented edge samples are parallelly generated by random walks in an online fashion on the network, and serve as the training data. On the GPU end, a novel parallel negative sampling is proposed to leverage multiple GPUs to train node embeddings simultaneously, without much data transfer and synchronization. Moreover, an efficient collaboration strategy is proposed to further reduce the synchronization cost between CPUs and GPUs. Experiments on multiple real-world networks show that GraphVite is super efficient. It takes only about one minute for a network with 1 million nodes and 5 million edges on a single machine with 4 GPUs, and takes around 20 hours for a network with 66 million nodes and 1.8 billion edges. Compared to the current fastest system, GraphVite is about 50 times faster without any sacrifice on performance.Comment: accepted at WWW 201

    Soft Pilot Reuse and Multi-Cell Block Diagonalization Precoding for Massive MIMO Systems

    Full text link
    The users at cell edge of a massive multiple-input multiple-output (MIMO) system suffer from severe pilot contamination, which leads to poor quality of service (QoS). In order to enhance the QoS for these edge users, soft pilot reuse (SPR) combined with multi-cell block diagonalization (MBD) precoding are proposed. Specifically, the users are divided into two groups according to their large-scale fading coefficients, referred to as the center users, who only suffer from modest pilot contamination and the edge users, who suffer from severe pilot contamination. Based on this distinction, the SPR scheme is proposed for improving the QoS for the edge users, whereby a cell-center pilot group is reused for all cell-center users in all cells, while a cell-edge pilot group is applied for the edge users in the adjacent cells. By extending the classical block diagonalization precoding to a multi-cell scenario, the MBD precoding scheme projects the downlink transmit signal onto the null space of the subspace spanned by the inter-cell channels of the edge users in adjacent cells. Thus, the inter-cell interference contaminating the edge users' signals in the adjacent cells can be efficiently mitigated and hence the QoS of these edge users can be further enhanced. Our theoretical analysis and simulation results demonstrate that both the uplink and downlink rates of the edge users are significantly improved, albeit at the cost of the slightly decreased rate of center users.Comment: 13 pages, 12 figures, accepted for publication in IEEE Transactions on Vehicular Technology, 201

    Inductive Logical Query Answering in Knowledge Graphs

    Full text link
    Formulating and answering logical queries is a standard communication interface for knowledge graphs (KGs). Alleviating the notorious incompleteness of real-world KGs, neural methods achieved impressive results in link prediction and complex query answering tasks by learning representations of entities, relations, and queries. Still, most existing query answering methods rely on transductive entity embeddings and cannot generalize to KGs containing new entities without retraining the entity embeddings. In this work, we study the inductive query answering task where inference is performed on a graph containing new entities with queries over both seen and unseen entities. To this end, we devise two mechanisms leveraging inductive node and relational structure representations powered by graph neural networks (GNNs). Experimentally, we show that inductive models are able to perform logical reasoning at inference time over unseen nodes generalizing to graphs up to 500% larger than training ones. Exploring the efficiency--effectiveness trade-off, we find the inductive relational structure representation method generally achieves higher performance, while the inductive node representation method is able to answer complex queries in the inference-only regime without any training on queries and scales to graphs of millions of nodes. Code is available at https://github.com/DeepGraphLearning/InductiveQE.Comment: Accepted at NeurIPS 202