81 research outputs found

    Interpreting Adversarially Trained Convolutional Neural Networks

    Full text link
    We attempt to interpret how adversarially trained convolutional neural networks (AT-CNNs) recognize objects. We design systematic approaches to interpret AT-CNNs in both qualitative and quantitative ways and compare them with normally trained models. Surprisingly, we find that adversarial training alleviates the texture bias of standard CNNs when trained on object recognition tasks, and helps CNNs learn a more shape-biased representation. We validate our hypothesis from two aspects. First, we compare the salience maps of AT-CNNs and standard CNNs on clean images and images under different transformations. The comparison could visually show that the prediction of the two types of CNNs is sensitive to dramatically different types of features. Second, to achieve quantitative verification, we construct additional test datasets that destroy either textures or shapes, such as style-transferred version of clean data, saturated images and patch-shuffled ones, and then evaluate the classification accuracy of AT-CNNs and normal CNNs on these datasets. Our findings shed some light on why AT-CNNs are more robust than those normally trained ones and contribute to a better understanding of adversarial training over CNNs from an interpretation perspective.Comment: To apper in ICML1

    Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting

    Full text link
    Timely accurate traffic forecast is crucial for urban traffic control and guidance. Due to the high nonlinearity and complexity of traffic flow, traditional methods cannot satisfy the requirements of mid-and-long term prediction tasks and often neglect spatial and temporal dependencies. In this paper, we propose a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain. Instead of applying regular convolutional and recurrent units, we formulate the problem on graphs and build the model with complete convolutional structures, which enable much faster training speed with fewer parameters. Experiments show that our model STGCN effectively captures comprehensive spatio-temporal correlations through modeling multi-scale traffic networks and consistently outperforms state-of-the-art baselines on various real-world traffic datasets.Comment: Proceedings of the 27th International Joint Conference on Artificial Intelligenc

    Reinforced Continual Learning

    Full text link
    Most artificial intelligence models have limiting ability to solve new tasks faster, without forgetting previously acquired knowledge. The recently emerging paradigm of continual learning aims to solve this issue, in which the model learns various tasks in a sequential fashion. In this work, a novel approach for continual learning is proposed, which searches for the best neural architecture for each coming task via sophisticatedly designed reinforcement learning strategies. We name it as Reinforced Continual Learning. Our method not only has good performance on preventing catastrophic forgetting but also fits new tasks well. The experiments on sequential classification tasks for variants of MNIST and CIFAR-100 datasets demonstrate that the proposed approach outperforms existing continual learning alternatives for deep networks
    corecore