1,850 research outputs found

    Deformable Audio Transformer for Audio Event Detection

    Full text link
    Transformers have achieved promising results on a variety of tasks. However, the quadratic complexity in self-attention computation has limited the applications, especially in low-resource settings and mobile or edge devices. Existing works have proposed to exploit hand-crafted attention patterns to reduce computation complexity. However, such hand-crafted patterns are data-agnostic and may not be optimal. Hence, it is likely that relevant keys or values are being reduced, while less important ones are still preserved. Based on this key insight, we propose a novel deformable audio Transformer for audio recognition, named DATAR, where a deformable attention equipping with a pyramid transformer backbone is constructed and learnable. Such an architecture has been proven effective in prediction tasks,~\textit{e.g.}, event classification. Moreover, we identify that the deformable attention map computation may over-simplify the input feature, which can be further enhanced. Hence, we introduce a learnable input adaptor to alleviate this issue, and DATAR achieves state-of-the-art performance.Comment: ICASSP 2024. arXiv admin note: substantial text overlap with arXiv:2201.00520 by other author

    TPC-ViT: Token Propagation Controller for Efficient Vision Transformer

    Full text link
    Vision transformers (ViTs) have achieved promising results on a variety of Computer Vision tasks, however their quadratic complexity in the number of input tokens has limited their application specially in resource-constrained settings. Previous approaches that employ gradual token reduction to address this challenge assume that token redundancy in one layer implies redundancy in all the following layers. We empirically demonstrate that this assumption is often not correct, i.e., tokens that are redundant in one layer can be useful in later layers. We employ this key insight to propose a novel token propagation controller (TPC) that incorporates two different token-distributions, i.e., pause probability and restart probability to control the reduction and reuse of tokens respectively, which results in more efficient token utilization. To improve the estimates of token distributions, we propose a smoothing mechanism that acts as a regularizer and helps remove noisy outliers. Furthermore, to improve the training-stability of our proposed TPC, we introduce a model stabilizer that is able to implicitly encode local image structures and minimize accuracy fluctuations during model training. We present extensive experimental results on the ImageNet-1K dataset using DeiT, LV-ViT and Swin models to demonstrate the effectiveness of our proposed method. For example, compared to baseline models, our proposed method improves the inference speed of the DeiT-S by 250% while increasing the classification accuracy by 1.0%.Comment: Accepted by the main conference of WACV 2024; well-formatted PDF is in https://drive.google.com/file/d/1Id3oEdYv3OWing1qojQMyjvhZO-gG-Dm/view?usp=sharing ; supplementary is in https://drive.google.com/file/d/15LhYlBdCXtompA0_TLAp_ZJb4_sq2N5V/view?usp=sharin

    Deep Learning for Automated Medical Image Analysis

    Get PDF
    Medical imaging is an essential tool in many areas of medical applications, used for both diagnosis and treatment. However, reading medical images and making diagnosis or treatment recommendations require specially trained medical specialists. The current practice of reading medical images is labor-intensive, time-consuming, costly, and error-prone. It would be more desirable to have a computer-aided system that can automatically make diagnosis and treatment recommendations. Recent advances in deep learning enable us to rethink the ways of clinician diagnosis based on medical images. In this thesis, we will introduce 1) mammograms for detecting breast cancers, the most frequently diagnosed solid cancer for U.S. women, 2) lung CT images for detecting lung cancers, the most frequently diagnosed malignant cancer, and 3) head and neck CT images for automated delineation of organs at risk in radiotherapy. First, we will show how to employ the adversarial concept to generate the hard examples improving mammogram mass segmentation. Second, we will demonstrate how to use the weakly labeled data for the mammogram breast cancer diagnosis by efficiently design deep learning for multi-instance learning. Third, the thesis will walk through DeepLung system which combines deep 3D ConvNets and GBM for automated lung nodule detection and classification. Fourth, we will show how to use weakly labeled data to improve existing lung nodule detection system by integrating deep learning with a probabilistic graphic model. Lastly, we will demonstrate the AnatomyNet which is thousands of times faster and more accurate than previous methods on automated anatomy segmentation.Comment: PhD Thesi

    Adversarial Deep Structured Nets for Mass Segmentation from Mammograms

    Full text link
    Mass segmentation provides effective morphological features which are important for mass diagnosis. In this work, we propose a novel end-to-end network for mammographic mass segmentation which employs a fully convolutional network (FCN) to model a potential function, followed by a CRF to perform structured learning. Because the mass distribution varies greatly with pixel position, the FCN is combined with a position priori. Further, we employ adversarial training to eliminate over-fitting due to the small sizes of mammogram datasets. Multi-scale FCN is employed to improve the segmentation performance. Experimental results on two public datasets, INbreast and DDSM-BCRP, demonstrate that our end-to-end network achieves better performance than state-of-the-art approaches. \footnote{https://github.com/wentaozhu/adversarial-deep-structural-networks.git}Comment: Accepted by ISBI2018. arXiv admin note: substantial text overlap with arXiv:1612.0597
    • …
    corecore