10,246 research outputs found

    Focusing RKKY interaction by graphene P-N junction

    Full text link
    The carrier-mediated RKKY interaction between local spins plays an important role for the application of magnetically doped graphene in spintronics and quantum computation. Previous studies largely concentrate on the influence of electronic states of uniform systems on the RKKY interaction. Here we reveal a very different way to manipulate the RKKY interaction by showing that the anomalous focusing - a well-known electron optics phenomenon in graphene P-N junctions - can be utilized to refocus the massless Dirac electrons emanating from one local spin to the other local spin. This gives rise to rich spatial interference patterns and symmetry-protected non-oscillatory RKKY interaction with a strongly enhanced magnitude. It may provide a new way to engineer the long-range spin-spin interaction in graphene.Comment: 9 pages, 4 figure

    Superfluid and magnetic states of an ultracold Bose gas with synthetic three-dimensional spin-orbit coupling in an optical lattice

    Get PDF
    We study ultracold bosonic atoms with the synthetic three-dimensional spin-orbit (SO) coupling in a cubic optical lattice. In the superfluidity phase, the lowest energy band exhibits one, two or four pairs of degenerate single-particle ground states depending on the SO-coupling strengths, which can give rise to the condensate states with spin-stripes for the weak atomic interactions. In the deep Mott-insulator regime, the effective spin Hamiltonian of the system combines three-dimensional Heisenberg exchange interactions, anisotropy interactions and Dzyaloshinskii-Moriya interactions. Based on Monte Carlo simulations, we numerically demonstrate that the resulting Hamiltonian with an additional Zeeman field has a rich phase diagram with spiral, stripe, vortex crystal, and especially Skyrmion crystal spin-textures in each xy-plane layer. The obtained Skyrmion crystals can be tunable with square and hexagonal symmetries in a columnar manner along the z axis, and moreover are stable against the inter-layer spin-spin interactions in a large parameter region.Comment: 9 pages, 4 figures; title modified, references and discussions added; accepted by PR

    Electrically-controllable RKKY interaction in semiconductor quantum wires

    Full text link
    We demonstrate in theory that it is possible to all-electrically manipulate the RKKY interaction in a quasi-one-dimensional electron gas embedded in a semiconductor heterostructure, in the presence of Rashba and Dresselhaus spin-orbit interaction. In an undoped semiconductor quantum wire where intermediate excitations are gapped, the interaction becomes the short-ranged Bloembergen-Rowland super-exchange interaction. Owing to the interplay of different types of spin-orbit interaction, the interaction can be controlled to realize various spin models, e.g., isotropic and anisotropic Heisenberg-like models, Ising-like models with additional Dzyaloshinsky-Moriya terms, by tuning the external electric field and designing the crystallographic directions. Such controllable interaction forms a basis for quantum computing with localized spins and quantum matters in spin lattices.Comment: 5 pages, 1 figur

    Alpha-fetoprotein level as a biomarker of liver fibrosis status: a cross-sectional study of 619 consecutive patients with chronic hepatitis B

    Get PDF
    BACKGROUND: Hepatitis B virus (HBV) infection is a serious public health problem worldwide. This study aimed to investigate the relationship between serum alpha-fetoprotein (AFP) levels and pathological stages of liver biopsy in patients with chronic hepatitis B (CHB). METHODS: The study included 619 patients who were diagnosed with CHB from March 2005 to December 2011. AFP levels were measured by electrochemiluminescence. Liver biopsy samples were classified into five levels of inflammation (G) and fibrosis (S) stages, according to the Chinese guidelines for prevention and treatment of viral hepatitis. Two multivariable ordinal regression models were performed to determine associations between AFP, GGT, and APRI (AST/PLT ratio) and stages of inflammation and fibrosis. RESULTS: Significant positive and moderate correlations were shown between AFP levels and inflammation stages and between AFP levels and fibrosis stages (ρ = 0.436 and 0.404, p < 0.001). Median values of AFP at liver fibrosis stages S0-1, S2, S3, and S4 were 3.0, 3.4, 5.4, and 11.3 ng/ml, respectively, and median APRI (AST/PLT ratio) was 0.41. Receiver operating characteristic (ROC) curve analyses revealed that the areas under the curves (AUCs) were 0.685, 0.727, and 0.755 (all p <0.001) for judging inflammation stages of G ≥ 2, G ≥ 3, G = 4 by AFP; and 0.691, 0.717, and 0.718 (all p <0.001) for judging fibrosis stages of S ≥ 2, S ≥ 3, and S = 4 by AFP. APRI levels showed significant positive and moderate correlations with inflammation stages (ρ = 0.445, p < 0.001). AST, GGT, and APRI levels showed significant positive but very weak to weak correlations with fibrosis stages (ρ = 0.137, 0.237, 0.281, p < 0.001). CONCLUSIONS: Serum AFP levels increased as pathological levels of inflammation and fibrosis increased in CHB patients. Our data showed the clinical significance of serum AFP levels in diagnosing liver inflammation and fibrosis. Assessment of liver pathology may be improved by creating a predictive mathematical model by which AFP levels with other biomarkers

    Penetration of alkali atoms throughout graphene membrane: theoretical modeling

    Full text link
    Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout graphene membrane grown on silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate rather low (about 0.8 eV) energy barrier for the formation of temporary defects in carbon layer required for the penetration of Li at high concentration of adatoms, higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100{\deg}C and impenetrability of graphene membrane for Rb and Cs. Differences between epitaxial and free standing graphene for the penetration of alkali ions are also discussed.Comment: 16 pages, 3 figure, accepted to Nanoscal

    Testing and Data Reduction of the Chinese Small Telescope Array (CSTAR) for Dome A, Antarctica

    Full text link
    The Chinese Small Telescope ARray (hereinafter CSTAR) is the first Chinese astronomical instrument on the Antarctic ice cap. The low temperature and low pressure testing of the data acquisition system was carried out in a laboratory refrigerator and on the 4500m Pamirs high plateau, respectively. The results from the final four nights of test observations demonstrated that CSTAR was ready for operation at Dome A, Antarctica. In this paper we present a description of CSTAR and the performance derived from the test observations.Comment: Accepted Research in Astronomy and Astrophysics (RAA) 1 Latex file and 20 figure

    Proton irradiation effect on SCDs

    Full text link
    The Low Energy X-ray Telescope is a main payload on the Hard X-ray Modulation Telescope satellite. The swept charge device is selected for the Low Energy X-ray Telescope. As swept charge devices are sensitive to proton irradiation, irradiation test was carried out on the HI-13 accelerator at the China Institute of Atomic Energy. The beam energy was measured to be 10 MeV at the SCD. The proton fluence delivered to the SCD was 3×108protons/cm23\times10^{8}\mathrm{protons}/\mathrm{cm}^{2} over two hours. It is concluded that the proton irradiation affects both the dark current and the charge transfer inefficiency of the SCD through comparing the performance both before and after the irradiation. The energy resolution of the proton-irradiated SCD is 212 [email protected] keV at 60C-60\,^{\circ}\mathrm{C}, while it before irradiated is 134 eV. Moreover, better performance can be reached by lowering the operating temperature of the SCD on orbit
    corecore