4,815 research outputs found
Power Scaling of Uplink Massive MIMO Systems with Arbitrary-Rank Channel Means
This paper investigates the uplink achievable rates of massive multiple-input
multiple-output (MIMO) antenna systems in Ricean fading channels, using
maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect
and imperfect channel state information (CSI). In contrast to previous relevant
works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank
deterministic component as well as a Rayleigh-distributed random component. We
derive tractable expressions for the achievable uplink rate in the
large-antenna limit, along with approximating results that hold for any finite
number of antennas. Based on these analytical results, we obtain the scaling
law that the users' transmit power should satisfy, while maintaining a
desirable quality of service. In particular, it is found that regardless of the
Ricean -factor, in the case of perfect CSI, the approximations converge to
the same constant value as the exact results, as the number of base station
antennas, , grows large, while the transmit power of each user can be scaled
down proportionally to . If CSI is estimated with uncertainty, the same
result holds true but only when the Ricean -factor is non-zero. Otherwise,
if the channel experiences Rayleigh fading, we can only cut the transmit power
of each user proportionally to . In addition, we show that with an
increasing Ricean -factor, the uplink rates will converge to fixed values
for both MRC and ZF receivers
Power Allocation Schemes for Multicell Massive MIMO Systems
This paper investigates the sum-rate gains brought by power allocation
strategies in multicell massive multipleinput multiple-output systems, assuming
time-division duplex transmission. For both uplink and downlink, we derive
tractable expressions for the achievable rate with zero-forcing receivers and
precoders respectively. To avoid high complexity joint optimization across the
network, we propose a scheduling mechanism for power allocation, where in a
single time slot, only cells that do not interfere with each other adjust their
transmit powers. Based on this, corresponding transmit power allocation
strategies are derived, aimed at maximizing the sum rate per-cell. These
schemes are shown to bring considerable gains over equal power allocation for
practical antenna configurations (e.g., up to a few hundred). However, with
fixed number of users (N), these gains diminish as M turns to infinity, and
equal power allocation becomes optimal. A different conclusion is drawn for the
case where both M and N grow large together, in which case: (i) improved rates
are achieved as M grows with fixed M/N ratio, and (ii) the relative gains over
the equal power allocation diminish as M/N grows. Moreover, we also provide
applicable values of M/N under an acceptable power allocation gain threshold,
which can be used as to determine when the proposed power allocation schemes
yield appreciable gains, and when they do not. From the network point of view,
the proposed scheduling approach can achieve almost the same performance as the
joint power allocation after one scheduling round, with much reduced
complexity
Existence of solutions for fourth order differential equation with four-point boundary conditions
AbstractIn this paper we investigate the existence of solutions of a class of four-point boundary value problems for a fourth order ordinary differential equation. Our analysis relies on a nonlinear alternative of Leray–Schauder type
One-shot ultraspectral imaging with reconfigurable metasurfaces
One-shot spectral imaging that can obtain spectral information from thousands
of different points in space at one time has always been difficult to achieve.
Its realization makes it possible to get spatial real-time dynamic spectral
information, which is extremely important for both fundamental scientific
research and various practical applications. In this study, a one-shot
ultraspectral imaging device fitting thousands of micro-spectrometers (6336
pixels) on a chip no larger than 0.5 cm, is proposed and demonstrated.
Exotic light modulation is achieved by using a unique reconfigurable
metasurface supercell with 158400 metasurface units, which enables 6336
micro-spectrometers with dynamic image-adaptive performances to simultaneously
guarantee the density of spectral pixels and the quality of spectral
reconstruction. Additionally, by constructing a new algorithm based on
compressive sensing, the snapshot device can reconstruct ultraspectral imaging
information (/~0.001) covering a broad (300-nm-wide)
visible spectrum with an ultra-high center-wavelength accuracy of 0.04-nm
standard deviation and spectral resolution of 0.8 nm. This scheme of
reconfigurable metasurfaces makes the device can be directly extended to almost
any commercial camera with different spectral bands to seamlessly switch the
information between image and spectral image, and will open up a new space for
the application of spectral analysis combining with image recognition and
intellisense
- …