1,130 research outputs found
A Convex Formulation for Spectral Shrunk Clustering
Spectral clustering is a fundamental technique in the field of data mining
and information processing. Most existing spectral clustering algorithms
integrate dimensionality reduction into the clustering process assisted by
manifold learning in the original space. However, the manifold in
reduced-dimensional subspace is likely to exhibit altered properties in
contrast with the original space. Thus, applying manifold information obtained
from the original space to the clustering process in a low-dimensional subspace
is prone to inferior performance. Aiming to address this issue, we propose a
novel convex algorithm that mines the manifold structure in the low-dimensional
subspace. In addition, our unified learning process makes the manifold learning
particularly tailored for the clustering. Compared with other related methods,
the proposed algorithm results in more structured clustering result. To
validate the efficacy of the proposed algorithm, we perform extensive
experiments on several benchmark datasets in comparison with some
state-of-the-art clustering approaches. The experimental results demonstrate
that the proposed algorithm has quite promising clustering performance.Comment: AAAI201
Discrete Multi-modal Hashing with Canonical Views for Robust Mobile Landmark Search
Mobile landmark search (MLS) recently receives increasing attention for its
great practical values. However, it still remains unsolved due to two important
challenges. One is high bandwidth consumption of query transmission, and the
other is the huge visual variations of query images sent from mobile devices.
In this paper, we propose a novel hashing scheme, named as canonical view based
discrete multi-modal hashing (CV-DMH), to handle these problems via a novel
three-stage learning procedure. First, a submodular function is designed to
measure visual representativeness and redundancy of a view set. With it,
canonical views, which capture key visual appearances of landmark with limited
redundancy, are efficiently discovered with an iterative mining strategy.
Second, multi-modal sparse coding is applied to transform visual features from
multiple modalities into an intermediate representation. It can robustly and
adaptively characterize visual contents of varied landmark images with certain
canonical views. Finally, compact binary codes are learned on intermediate
representation within a tailored discrete binary embedding model which
preserves visual relations of images measured with canonical views and removes
the involved noises. In this part, we develop a new augmented Lagrangian
multiplier (ALM) based optimization method to directly solve the discrete
binary codes. We can not only explicitly deal with the discrete constraint, but
also consider the bit-uncorrelated constraint and balance constraint together.
Experiments on real world landmark datasets demonstrate the superior
performance of CV-DMH over several state-of-the-art methods
Personalized Video Recommendation Using Rich Contents from Videos
Video recommendation has become an essential way of helping people explore
the massive videos and discover the ones that may be of interest to them. In
the existing video recommender systems, the models make the recommendations
based on the user-video interactions and single specific content features. When
the specific content features are unavailable, the performance of the existing
models will seriously deteriorate. Inspired by the fact that rich contents
(e.g., text, audio, motion, and so on) exist in videos, in this paper, we
explore how to use these rich contents to overcome the limitations caused by
the unavailability of the specific ones. Specifically, we propose a novel
general framework that incorporates arbitrary single content feature with
user-video interactions, named as collaborative embedding regression (CER)
model, to make effective video recommendation in both in-matrix and
out-of-matrix scenarios. Our extensive experiments on two real-world
large-scale datasets show that CER beats the existing recommender models with
any single content feature and is more time efficient. In addition, we propose
a priority-based late fusion (PRI) method to gain the benefit brought by the
integrating the multiple content features. The corresponding experiment shows
that PRI brings real performance improvement to the baseline and outperforms
the existing fusion methods
DB-LSH: Locality-Sensitive Hashing with Query-based Dynamic Bucketing
Among many solutions to the high-dimensional approximate nearest neighbor
(ANN) search problem, locality sensitive hashing (LSH) is known for its
sub-linear query time and robust theoretical guarantee on query accuracy.
Traditional LSH methods can generate a small number of candidates quickly from
hash tables but suffer from large index sizes and hash boundary problems.
Recent studies to address these issues often incur extra overhead to identify
eligible candidates or remove false positives, making query time no longer
sub-linear. To address this dilemma, in this paper we propose a novel LSH
scheme called DB-LSH which supports efficient ANN search for large
high-dimensional datasets. It organizes the projected spaces with
multi-dimensional indexes rather than using fixed-width hash buckets. Our
approach can significantly reduce the space cost as by avoiding the need to
maintain many hash tables for different bucket sizes. During the query phase of
DB-LSH, a small number of high-quality candidates can be generated efficiently
by dynamically constructing query-based hypercubic buckets with the required
widths through index-based window queries. For a dataset of -dimensional
points with approximation ratio , our rigorous theoretical analysis shows
that DB-LSH achieves a smaller query cost , where
is bounded by while the bound is in the
existing work. An extensive range of experiments on real-world data
demonstrates the superiority of DB-LSH over state-of-the-art methods on both
efficiency and accuracy.Comment: Accepted by ICDE 202
K-nearest neighbor search for fuzzy objects
The K-Nearest Neighbor search (kNN) problem has been investigated extensively in the past due to its broad range of applications. In this paper we study this problem in the context of fuzzy objects that have indeterministic boundaries. Fuzzy objects play an important role in many areas, such as biomedical image databases and GIS. Existing research on fuzzy objects mainly focuses on modelling basic fuzzy object types and operations, leaving the processing of more advanced queries such as kNN query untouched. In this paper, we propose two new kinds of kNN queries for fuzzy objects, Ad-hoc kNN query (AKNN) and Range kNN query (RKNN), to find the k nearest objects qualifying at a probability threshold or within a probability range. For efficient AKNN query processing, we optimize the basic best-first search algorithm by deriving more accurate approximations for the distance function between fuzzy objects and the query object. To improve the performance of RKNN search, effective pruning rules are developed to significantly reduce the search space and further speed up the candidate refinement process. The efficiency of our proposed algorithms as well as the optimization techniques are verified with an extensive set of experiments using both synthetic and real datasets
- …