4,954 research outputs found
When can we forecast inflation?
This article reassesses recent work that has challenged the usefulness of inflation forecasts. The authors find that inflation forecasts were informative in 1977-84 and 1993-2000, but less informative in 1985-92. They also find that standard forecasting models, while generally poor at forecasting the magnitude of inflation, are good at forecasting the direction of change of inflation.Inflation (Finance) ; Phillips curve
Ab initio study of electron mean free paths and thermoelectric properties of lead telluride
Last few years have witnessed significant enhancement of thermoelectric figure of merit of lead telluride (PbTe) via nanostructuring. Despite the experimental progress, current understanding of the electron transport in PbTe is based on either band structure calculation using first principles with constant relaxation time approximation or empirical models, both relying on adjustable parameters obtained by fitting experimental data. Here, we report parameter-free first-principles calculation of electron and phonon transport properties of PbTe, including mode-by-mode electron-phonon scattering analysis, leading to detailed information on electron mean free paths and the contributions of electrons and phonons with different mean free paths to thermoelectric transport properties in PbTe. Such information will help to rationalize the use and optimization of nanostructures to achieve high thermoelectric figure of merit
Co-ordinated Control Strategy for Hybrid Wind Farms with PMSG and FSIG under Unbalanced Grid Voltage Condition
Phonon Hydrodynamic Heat Conduction and Knudsen Minimum in Graphite
In the hydrodynamic regime, phonons drift with a nonzero collective velocity under a temperature gradient, reminiscent of viscous gas and fluid flow. The study of hydrodynamic phonon transport has spanned over half a century but has been mostly limited to cryogenic temperatures (∼1 K) and more recently to low-dimensional materials. Here, we identify graphite as a three-dimensional material that supports phonon hydrodynamics at significantly higher temperatures (∼100 K) based on first-principles calculations. In particular, by solving the Boltzmann equation for phonon transport in graphite ribbons, we predict that phonon Poiseuille flow and Knudsen minimum can be experimentally observed above liquid nitrogen temperature. Further, we reveal the microscopic origin of these intriguing phenomena in terms of the dependence of the effective boundary scattering rate on momentum-conserving phonon-phonon scattering processes and the collective motion of phonons. The significant hydrodynamic nature of phonon transport in graphite is attributed to its strong intralayer sp2 hybrid bonding and weak van der Waals interlayer interactions. More intriguingly, the reflection symmetry associated with a single graphene layer is broken in graphite, which opens up more momentum-conserving phonon-phonon scattering channels and results in stronger hydrodynamic features in graphite than graphene. As a boundary-sensitive transport regime, phonon hydrodynamics opens up new possibilities for thermal management and energy conversion. Keywords: collective drift motion; first-principles calculation; Knudsen minimum; Phonon hydrodynamic; phonon Poiseuille flo
Selective scattering between Floquet-Bloch and Volkov states in a topological insulator
The coherent optical manipulation of solids is emerging as a promising way to
engineer novel quantum states of matter. The strong time periodic potential of
intense laser light can be used to generate hybrid photon-electron states.
Interaction of light with Bloch states leads to Floquet-Bloch states which are
essential in realizing new photo-induced quantum phases. Similarly, dressing of
free electron states near the surface of a solid generates Volkov states which
are used to study non-linear optics in atoms and semiconductors. The
interaction of these two dynamic states with each other remains an open
experimental problem. Here we use Time and Angle Resolved Photoemission
Spectroscopy (Tr-ARPES) to selectively study the transition between these two
states on the surface of the topological insulator Bi2Se3. We find that the
coupling between the two strongly depends on the electron momentum, providing a
route to enhance or inhibit it. Moreover, by controlling the light polarization
we can negate Volkov states in order to generate pure Floquet-Bloch states.
This work establishes a systematic path for the coherent manipulation of solids
via light-matter interaction.Comment: 21 pages, 6 figures, final version to appear in Nature Physic
Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer
Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH
- …
