49 research outputs found

    An intelligent control method based on artifi cial neural network model

    Get PDF
    The topology structure of the artifi cial neural network is an intelligent control model, which is used for intelligent vehicle control system and household sweeping robot. When setting the intelligent control system, the connection point of each network is regarded as a neuron in the nervous system, and each connection point has input and output functions. Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated. Using the networking mode of artifi cial neural network model, the mobile node can output in multiple directions. If the input direction of a certain path is the same as that of other nodes, it can choose to avoid and choose another path. The weighted value of each path between nodes is diff erent, which means that the infl uence of the front node on the current node is diff erent. The control method based on artifi cial neural network model can be applied to vehicle control, household sweeping machine and other fi elds, and a relatively optimized scheme can be obtained from the aspect of time and energy consumption

    Distributed Dynamic Map Fusion via Federated Learning for Intelligent Networked Vehicles

    Full text link
    The technology of dynamic map fusion among networked vehicles has been developed to enlarge sensing ranges and improve sensing accuracies for individual vehicles. This paper proposes a federated learning (FL) based dynamic map fusion framework to achieve high map quality despite unknown numbers of objects in fields of view (FoVs), various sensing and model uncertainties, and missing data labels for online learning. The novelty of this work is threefold: (1) developing a three-stage fusion scheme to predict the number of objects effectively and to fuse multiple local maps with fidelity scores; (2) developing an FL algorithm which fine-tunes feature models (i.e., representation learning networks for feature extraction) distributively by aggregating model parameters; (3) developing a knowledge distillation method to generate FL training labels when data labels are unavailable. The proposed framework is implemented in the Car Learning to Act (CARLA) simulation platform. Extensive experimental results are provided to verify the superior performance and robustness of the developed map fusion and FL schemes.Comment: 12 pages, 5 figures, to appear in 2021 IEEE International Conference on Robotics and Automation (ICRA

    The deubiquitinase USP6 affects memory and synaptic plasticity through modulating NMDA receptor stability

    Get PDF
    人类与其他动物相比的重要区别在于人类拥有高等认知能力,这种能力集中体现在学习记忆和语言表达方面。厦门大学医学院神经科学研究所王鑫教授团队发现人科动物特异性基因USP6作为一个新的NMDA受体调控因子,可通过去泛素化途径调节NMDA型谷氨酸受体的降解和稳定性,进而调控突触可塑性和学习记忆能力。 本研究工作由王鑫教授指导完成,博士生曾凡伟、马学海与硕士生朱琳为共同第一作者,王鑫教授为通讯作者。Ubiquitin-specific protease (USP) 6 is a hominoid deubiquitinating enzyme previously implicated in intellectual disability and autism spectrum disorder. Although these findings link USP6 to higher brain function, potential roles for USP6 in cognition have not been investigated. Here, we report that USP6 is highly expressed in induced human neurons and that neuron-specific expression of USP6 enhances learning and memory in a transgenic mouse model. Similarly, USP6 expression regulates N-methyl-D-aspartate-type glutamate receptor (NMDAR)-dependent long-term potentiation and long-term depression in USP6 transgenic mouse hippocampi. Proteomic characterization of transgenic USP6 mouse cortex reveals attenuated NMDAR ubiquitination, with concomitant elevation in NMDAR expression, stability, and cell surface distribution with USP6 overexpression. USP6 positively modulates GluN1 expression in transfected cells, and USP6 down-regulation impedes focal GluN1 distribution at postsynaptic densities and impairs synaptic function in neurons derived from human embryonic stem cells. Together, these results indicate that USP6 enhances NMDAR stability to promote synaptic function and cognition.This work was partially supported by the National Natural Science Foundation of China (31871077, 81822014, 81571176 to XW; 81701349 to Hongfeng Z.; 81701130 to QZ; and 81471160 to HS), the National Key R&D Program of China (2016YFC1305900 to XW and HS), the Natural Science Foundation of Fujian Province of China (2017J06021 to XW), the Fundamental Research Funds for the Chinese Central Universities (20720150061 to XW and 20720180040 to ZS), Open Research Fund of State Key Laboratory of Cellular Stress Biology, Xiamen University (SKLCSB2019KF012 to QZ), and China Postdoctoral Science Foundation (2017M612130 to QZ).该研究得到了国家自然科学基金面上项目和优秀青年基金项目的支持

    Trisomy 21-induced Dysregulation of Microglial Homeostasis in Alzheimer’s Brains is Mediated by USP25

    Get PDF
    阿尔茨海默病(Alzheimer’s disease, AD)是一种最为常见的与记忆、认知能力退化相关的渐进性神经退行性疾病。唐氏综合征(Down’s syndrome, DS)是早发型阿尔茨海默病的一个重要风险因素,作为最常见的智力障碍遗传疾病,厦门大学医学院神经科学研究所王鑫教授团队揭示了治疗阿尔茨海默病和唐氏综合征新的治疗靶点,并且在小鼠模型上利用USP25小分子抑制剂成功地改善了阿尔茨海默病小鼠的认知功能,缓解了神经退行性病变的病理进程。该研究工作由王鑫教授指导完成,厦门大学医学院助理教授郑秋阳和博士生李桂林完成主要实验工作,王世华、朱琳、高月、邓青芳、张洪峰、张丽珊、吴美玲、狄安洁参与了部分研究工作。厦门大学医学院许华曦、赵颖俊和孙灏教授在研究过程中给予大力帮助和支持,清华大学董晨教授提供了Usp25基因敲除小鼠,厦门大学附属妇女儿童医院周裕林教授和郑良楷博士帮助收集了脑组织样品。Down syndrome (DS), caused by trisomy of chromosome 21, is the most significant risk factor for early-onset Alzheimer’s disease (AD); however, underlying mechanisms linking DS and AD remain unclear. Here, we show that triplication of homologous chromosome 21 genes aggravates neuroinflammation in combined murine DS-AD models. Overexpression of USP25, a deubiquitinating enzyme encoded by chromosome 21, results in microglial activation and induces synaptic and cognitive deficits, whereas genetic ablation of Usp25 reduces neuroinflammation and rescues synaptic and cognitive function in 5×FAD mice. Mechanistically, USP25 deficiency attenuates microglia-mediated proinflammatory cytokine overproduction and synapse elimination. Inhibition of USP25 reestablishes homeostatic microglial signatures and restores synaptic and cognitive function in 5×FAD mice. In summary, we demonstrate an unprecedented role for trisomy 21 and pathogenic effects associated with microgliosis as a result of the increased USP25 dosage, implicating USP25 as a therapeutic target for neuroinflammation in DS and AD.This work was supported by the National Natural Science Foundation of China (31871077, 81822014, and 81571176 to X.W.; 81701130 to Q.Z.), the National Key R&D Program of China (2016YFC1305900 to X.W.), the Natural Science Foundation of Fujian Province of China (2017J06021 to X.W.), the Fundamental Research Funds for the Chinese Central Universities (20720150061 to X.W.), and the BrightFocus Foundation (A2018214F to Yingjun Zhao). 该研究工作得到国家重点研发计划项目、国家自然科学基金、福建省自然科学基金、厦门大学校长基金的资助和支持

    >

    No full text

    Design of a High Performance Branch Predictor Based on Global History Considering Hardware Cost

    No full text
    corecore