22,004 research outputs found
Energy-Efficient Antenna Selection and Power Allocation for Large-Scale Multiple Antenna Systems with Hybrid Energy Supply
The combination of energy harvesting and large-scale multiple antenna
technologies provides a promising solution for improving the energy efficiency
(EE) by exploiting renewable energy sources and reducing the transmission power
per user and per antenna. However, the introduction of energy harvesting
capabilities into large-scale multiple antenna systems poses many new
challenges for energy-efficient system design due to the intermittent
characteristics of renewable energy sources and limited battery capacity.
Furthermore, the total manufacture cost and the sum power of a large number of
radio frequency (RF) chains can not be ignored, and it would be impractical to
use all the antennas for transmission. In this paper, we propose an
energy-efficient antenna selection and power allocation algorithm to maximize
the EE subject to the constraint of user's quality of service (QoS). An
iterative offline optimization algorithm is proposed to solve the non-convex EE
optimization problem by exploiting the properties of nonlinear fractional
programming. The relationships among maximum EE, selected antenna number,
battery capacity, and EE-SE tradeoff are analyzed and verified through computer
simulations.Comment: IEEE Globecom 2014 Selected Areas in Communications Symposium-Green
Communications and Computing Trac
- …