49,775 research outputs found
LASSO ISOtone for High Dimensional Additive Isotonic Regression
Additive isotonic regression attempts to determine the relationship between a
multi-dimensional observation variable and a response, under the constraint
that the estimate is the additive sum of univariate component effects that are
monotonically increasing. In this article, we present a new method for such
regression called LASSO Isotone (LISO). LISO adapts ideas from sparse linear
modelling to additive isotonic regression. Thus, it is viable in many
situations with high dimensional predictor variables, where selection of
significant versus insignificant variables are required. We suggest an
algorithm involving a modification of the backfitting algorithm CPAV. We give a
numerical convergence result, and finally examine some of its properties
through simulations. We also suggest some possible extensions that improve
performance, and allow calculation to be carried out when the direction of the
monotonicity is unknown
- …