2 research outputs found

    Liquid Crystalline Behavior of Graphene Oxide in the Formation and Deformation of Tough Nanocomposite Hydrogels

    No full text
    In this paper, we report the formation and transformation of graphene oxide (GO) liquid crystalline (LC) structures in the synthesis and deformation of tough GO nanocomposite hydrogels. GO aqueous dispersions form a nematic LC phase, while the addition of poly­(<i>N</i>-vinylpyrrolidone) (PVP) and acrylamide (AAm), which are capable of forming hydrogen bonding with GO nanosheets, shifts the isotropic/nematic transition to a lower volume fraction of GO and enhances the formation of nematic droplets. During the gelation process, a phase separation of the polymers and GO nanosheets is accompanied by the directional assembly of GO nanosheets, forming large LC tactoids with a radial GO configuration. The shape of the large tactoids evolves from a sphere to a toroid as the tactoids increase in size. Interestingly, during cyclic uniaxial tensile deformation a reversible LC transition is observed in the very tough hydrogels. The isolated birefringent domains and the LC domains in the tactoids in the gels are highly oriented under a high tensile strain

    Tough and Thermosensitive Poly(<i>N</i>‑isopropylacrylamide)/Graphene Oxide Hydrogels with Macroscopically Oriented Liquid Crystalline Structures

    No full text
    Bulk graphene oxide (GO) nanocomposite materials with macroscopically oriented GO liquid crystalline (LC) structures exhibit interesting anisotropic properties, but their facile preparations remain challenging. This work reports for the first time the facile preparation of poly­(<i>N</i>-isopropylacrylamide) (PNIPAM)/GO nanocomposite hydrogels with macroscopically oriented LC structures with the assistance of a flow field induced by vacuum degassing and the in situ polymerization accelerated by GO. The hydrogel prepared with a GO concentration of 5.0 mg mL<sup>–1</sup> exhibits macroscopically aligned LC structures, which endow the gels with anisotropic optical, mechanical properties, and dimensional changes during the phase transition. The hydrogels show dramatically enhanced tensile mechanical properties and phase transition rates. The oriented LC structures are not damaged during the phase transition of the PNIPAM/GO hydrogels, and hence their LC behavior undergoes reversible change. Moreover, highly oriented LC structures can also be formed when the gels are elongated, even for the gels which do not have macroscopically oriented LC structures. Very impressively, the oriented LC structures in the hydrogels can be permanently maintained by drying the gel samples elongated to and then kept at a constant tensile strain. The thermosensitive nature of PNIPAM and the angle-dependent nature of the macroscopically aligned GO LC structures allow the practical applications of the PNIPAM/GO hydrogels as optical switches, soft sensors, and actuators and so on
    corecore