3 research outputs found
Improvement of Green Upconversion Monochromaticity by Doping Eu<sup>3+</sup> in Lu<sub>2</sub>O<sub>3</sub>:Yb<sup>3+</sup>/Ho<sup>3+</sup> Powders with Detailed Investigation of the Energy Transfer Mechanism
The monochromaticity
improvement of green upconversion (UC) in Lu<sub>2</sub>O<sub>3</sub>:Yb<sup>3+</sup>/Ho<sup>3+</sup> powders has been successfully realized
by tridoping Eu<sup>3+</sup>. The integral area ratio of green emission
to red emission of Ho<sup>3+</sup> increases 4.3 times with increasing
Eu<sup>3+</sup> doping concentration from 0 to 20 mol %. The energy
transfer (ET) mechanism in the Yb<sup>3+</sup>/Ho<sup>3+</sup>/Eu<sup>3+</sup> tridoping system has been investigated carefully by visible
and near-infrared (NIR) emission spectra along with the decay curves,
revealing the existence of ET from the Ho<sup>3+</sup> <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> level tothe Eu<sup>3+</sup> <sup>5</sup>D<sub>0</sub> level and ET from the Ho<sup>3+</sup> <sup>5</sup>I<sub>6</sub> level to the Eu<sup>3+</sup> <sup>7</sup>F<sub>6</sub> level. In addition, the population routes of the red-emitting
Ho<sup>3+</sup> <sup>5</sup>F<sub>5</sub> level in the Yb<sup>3+</sup>/Ho<sup>3+</sup> codoped system under 980 nm wavelength excitation
have also been explored. The ET process from the Yb<sup>3+</sup> <sup>2</sup>F<sub>5/2</sub> level to the Ho<sup>3+</sup> <sup>5</sup>I<sub>7</sub> level and the cross-relaxation process between two nearby
Ho<sup>3+</sup> ions in the <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> level and <sup>5</sup>I<sub>7</sub> level, respectively,
have been demonstrated to be the dominant approaches for populating
the Ho<sup>3+</sup> <sup>5</sup>F<sub>5</sub> level. The multiphonon
relaxation process originating from the Ho<sup>3+</sup> <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> level is useless to populate
the Ho<sup>3+</sup> <sup>5</sup>F<sub>5</sub> level. As the energy
level gap between the Ho<sup>3+</sup> <sup>5</sup>I<sub>7</sub> level
and Ho<sup>3+</sup> <sup>5</sup>I<sub>8</sub> level matches well with
that between Eu<sup>3+</sup> <sup>7</sup>F<sub>6</sub> level and Eu<sup>3+</sup> <sup>7</sup>F<sub>0</sub> level, the energy of the Ho<sup>3+</sup> <sup>5</sup>I<sub>7</sub> level can be easily transferred
to the Eu<sup>3+</sup> <sup>7</sup>F<sub>6</sub> level by an approximate
resonant ET process, resulting in a serious decrease in the red UC
emission intensity. Since this ET process is more efficient than the
ET from the Ho<sup>3+</sup> <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> level to the Eu<sup>3+</sup> <sup>5</sup>D<sub>0</sub> level as well as the ET from the Ho<sup>3+</sup> <sup>5</sup>I<sub>6</sub> level to the Eu<sup>3+</sup> <sup>7</sup>F<sub>6</sub> level,
the integral area ratio of green emission to red emission of Ho<sup>3+</sup> has been improved significantly
Enhancement of Eu<sup>3+</sup> Red Upconversion in Lu<sub>2</sub>O<sub>3</sub>: Yb<sup>3+</sup>/Eu<sup>3+</sup> Powders under the Assistance of Bridging Function Originated from Ho<sup>3+</sup> Tridoping
The red upconversion
(UC) emission of Eu<sup>3+</sup> ions in Lu<sub>2</sub>O<sub>3</sub>: Yb<sup>3+</sup>/Eu<sup>3+</sup> powders was successfully enhanced
by tridoping Ho<sup>3+</sup> ions in the matrix, which is due to the
bridging function of Ho<sup>3+</sup> ions. The experiment data manifest
that, in Yb<sup>3+</sup>/Eu<sup>3+</sup>/Ho<sup>3+</sup> tridoped
system, the Ho<sup>3+</sup> ions are first populated to the green
emitting level <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> through the energy transfer (ET) processes from the excited Yb<sup>3+</sup> ions. Subsequently, the Ho<sup>3+</sup> ions at <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> level can transfer their
energy to the Eu<sup>3+</sup> ions at the ground state, resulting
in the population of Eu<sup>3+</sup> <sup>5</sup>D<sub>0</sub> level.
With the assistance of the bridging function of Ho<sup>3+</sup> ion,
this ET process is more efficient than the cooperative sensitization
process between Yb<sup>3+</sup> ion and Eu<sup>3+</sup> ion. Compared
with Lu<sub>2</sub>O<sub>3</sub>: 5 mol % Yb<sup>3+</sup>/1 mol %
Eu<sup>3+</sup>, the UC intensity of Eu<sup>3+</sup> <sup>5</sup>D<sub>0</sub>→<sup>7</sup>F<sub>2</sub> transition in Lu<sub>2</sub>O<sub>3</sub>: 5 mol % Yb<sup>3+</sup>/1 mol % Eu<sup>3+</sup>/0.5
mol % Ho<sup>3+</sup> is increased by a factor of 8
Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers
Somatic point mutations
at a key arginine residue (R132) within
the active site of the metabolic enzyme isocitrate dehydrogenase 1
(IDH1) confer a novel gain of function in cancer cells, resulting
in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite.
Elevated 2-HG levels are implicated in epigenetic alterations and
impaired cellular differentiation. IDH1 mutations have been described
in an array of hematologic malignancies and solid tumors. Here, we
report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1
mutant enzyme that exhibits profound 2-HG lowering in tumor models
and the ability to effect differentiation of primary patient AML samples
ex vivo. Preliminary data from phase 1 clinical trials enrolling patients
with cancers harboring an IDH1 mutation indicate that AG-120 has an
acceptable safety profile and clinical activity