4 research outputs found

    Experimental and Theoretical Investigation of the Restructuring Process Induced by CO at Near Ambient Pressure: Pt Nanoclusters on Graphene/Ir(111)

    No full text
    The adsorption of CO on Pt nanoclusters grown in a regular array on a template provided by the graphene/Ir(111) MoireŐĀ was investigated by means of infrared-visible sum frequency generation vibronic spectroscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy from ultrahigh vacuum to near-ambient pressure, and <i>ab initio</i> simulations. Both terminally and bridge bonded CO species populate nonequivalent sites of the clusters, spanning from first to second-layer terraces to borders and edges, depending on the particle size and morphology and on the adsorption conditions. By combining experimental information and the results of the simulations, we observe a significant restructuring of the clusters. Additionally, above room temperature and at 0.1 mbar, Pt clusters catalyze the spillover of CO to the underlying graphene/Ir(111) interface

    Chemistry of the Methylamine Termination at a Gold Surface: From Autorecognition to Condensation

    No full text
    13The self-assembly of the naphthylmethylamine molecules (NMA) on the Au(111) surface is investigated by a combined experimental and theoretical approach. Three well-defined phases are observed upon different thermal treatments at the monolayer stage. The role played by the methylamine termination is evidenced in both the molecule‚Äďmolecule and molecule‚Äďsubstrate interactions. The autorecognition process of the amino groups is identified as the driving factor for the formation of a complex hydrogen bonding scheme in small molecular clusters, possibly acting also as a precursor of a denitrogenation condensation process induced by thermal annealing.reservedmixedDri, Carlo; Fronzoni, Giovanna; Balducci, Gabriele; Furlan, Sara; Stener, Mauro; Feng, Zhijing; Comelli, Giovanni; Castellarin-Cudia, Carla; Cvetko, Dean; Kladnik, Gregor; Verdini, Alberto; Floreano, Luca; Cossaro, AlbanoDri, Carlo; Fronzoni, Giovanna; Balducci, Gabriele; Furlan, Sara; Stener, Mauro; Feng, Zhijing; Comelli, Giovanni; Castellarin Cudia, Carla; Cvetko, Dean; Kladnik, Gregor; Verdini, Alberto; Floreano, Luca; Cossaro, Alban

    Squid Skin Cell-Inspired Refractive Index Mapping of Cells, Vesicles, and Nanostructures

    No full text
    The fascination with the optical properties of naturally occurring systems has been driven in part by nature’s ability to produce a diverse palette of vibrant colors from a relatively small number of common structural motifs. Within this context, some cephalopod species have evolved skin cells called iridophores and leucophores whose constituent ultrastructures reflect light in different ways but are composed of the same high refractive index materiala protein called reflectin. Although such natural optical systems have attracted much research interest, measuring the refractive indices of biomaterial-based structures across multiple different environments and establishing theoretical frameworks for accurately describing the obtained refractive index values has proven challenging. Herein, we employ a synergistic combination of experimental and computational methodologies to systematically map the three-dimensional refractive index distributions of model self-assembled reflectin-based structures both in vivo and in vitro. When considered together, our findings may improve understanding of squid skin cell functionality, augment existing methods for characterizing protein-based optical materials, and expand the utility of emerging holotomographic microscopy techniques

    Squid Skin Cell-Inspired Refractive Index Mapping of Cells, Vesicles, and Nanostructures

    No full text
    The fascination with the optical properties of naturally occurring systems has been driven in part by nature’s ability to produce a diverse palette of vibrant colors from a relatively small number of common structural motifs. Within this context, some cephalopod species have evolved skin cells called iridophores and leucophores whose constituent ultrastructures reflect light in different ways but are composed of the same high refractive index materiala protein called reflectin. Although such natural optical systems have attracted much research interest, measuring the refractive indices of biomaterial-based structures across multiple different environments and establishing theoretical frameworks for accurately describing the obtained refractive index values has proven challenging. Herein, we employ a synergistic combination of experimental and computational methodologies to systematically map the three-dimensional refractive index distributions of model self-assembled reflectin-based structures both in vivo and in vitro. When considered together, our findings may improve understanding of squid skin cell functionality, augment existing methods for characterizing protein-based optical materials, and expand the utility of emerging holotomographic microscopy techniques
    corecore