4 research outputs found

    Mesoporous Bioactive Glass–Graphene Oxide Composite Aerogel with Effective Hemostatic and Antibacterial Activities

    No full text
    Hemorrhage and infection after emergency trauma are two main factors that cause deaths. It is of great importance to instantly stop bleeding and proceed with antibacterial treatment for saving lives. However, there is still a huge need and challenge to develop materials with functions of both rapid hemostasis and effective antibacterial therapy. Herein, we propose the fabrication of a composite aerogel mainly consisting of mesoporous bioactive glass (MBG) and graphene oxide (GO) through freeze-drying. This composite aerogel has a three-dimensional porous structure, high absorption, good hydrophilicity, and negative zeta potential. Moreover, it exhibits satisfactory hemostatic activities including low BCI, good hemocompatibility, and activation of intrinsic pathways. When applied to rat liver injury bleeding, it can decrease 60% hemostasis time and 75% blood loss amount compared to medical gauze. On the other hand, the composite aerogel shows excellent photothermal antibacterial capacity against Staphylococcus aureus and Escherichia coli. Animal experiments further verify that this composite aerogel can effectively kill bacteria in wound sites via photothermal treatment and promote wound healing. Hence, this MBG–GO composite aerogel makes a great choice for the therapy of emergency trauma with massive hemorrhage and bacterial infection

    Xonotlite Nanowire-Containing Bioactive Scaffolds for the Therapy of Defective Adipose Tissue in Breast Cancer

    No full text
    Considering the challenge in the treatment of severe breast tumor patients, xonotlite nanowire-containing bioactive scaffolds (Fe3O4-CS-GelMA) were fabricated by the 3D-printing technique for the therapy of injured adipose tissue after surgery. Importantly, benefiting from the excellent magnetothermal performance of Fe3O4 microspheres, Fe3O4-CS-GelMA scaffolds could effectively kill tumor cells in vitro and suppress breast cancer in vivo under an alternating magnetic field, and the tumor did not recur in 2 weeks. In addition, attributed to the released bioactive inorganic ions, Fe3O4-CS-GelMA composite scaffolds could effectively promote the expression of adipogenesis-related genes and proteins of adipose-derived stem cells (ADSCs) via the PI3K-AKT signaling pathway in vitro. Furthermore, Fe3O4-CS-GelMA scaffolds with ADSCs could obviously stimulate the formation of adipose in vivo, compared with that of pure GelMA without inorganic components. Therefore, this study offers a promising strategy for the therapy of breast tumors after the surgical excision of breast carcinoma

    Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration

    No full text
    Three-dimensional printing technologies have shown distinct advantages to create porous scaffolds with designed macropores for application in bone tissue engineering. However, until now, 3D-printed bioceramic scaffolds only possessing a single type of macropore have been reported. Generally, those scaffolds with a single type of macropore have relatively low porosity and pore surfaces, limited delivery of oxygen and nutrition to surviving cells, and new bone tissue formation in the center of the scaffolds. Therefore, in this work, we present a useful and facile method for preparing hollow-struts-packed (HSP) bioceramic scaffolds with designed macropores and multioriented hollow channels via a modified coaxial 3D printing strategy. The prepared HSP scaffolds combined high porosity and surface area with impressive mechanical strength. The unique hollow-struts structures of bioceramic scaffolds significantly improved cell attachment and proliferation and further promoted formation of new bone tissue in the center of the scaffolds, indicating that HSP ceramic scaffolds can be used for regeneration of large bone defects. In addition, the strategy can be used to prepare other HSP ceramic scaffolds, indicating a universal application for tissue engineering, mechanical engineering, catalysis, and environmental materials
    corecore