193 research outputs found

    Lower Bounds for Adaptive Relaxation-Based Algorithms for Single-Source Shortest Paths

    Get PDF
    We consider the classical single-source shortest path problem in directed weighted graphs. D. Eppstein proved recently an Ω(nÂł) lower bound for oblivious algorithms that use relaxation operations to update the tentative distances from the source vertex. We generalize this result by extending this Ω(nÂł) lower bound to adaptive algorithms that, in addition to relaxations, can perform queries involving some simple types of linear inequalities between edge weights and tentative distances. Our model captures as a special case the operations on tentative distances used by Dijkstra’s algorithm

    Inhibition of EZH2 via activation of SAPK/JNK and reduction of p65 and DNMT1 as a novel mechanism in inhibition of human lung cancer cells by polyphyllin I

    Full text link
    BACKGROUND: Polyphyllin I (PPI), a bioactive phytochemical extracted from the Rhizoma of Paris polyphylla, has been reported to exhibit anti-cancer activity. However, the detailed mechanism underlying this remains to be elucidated. METHODS: Cell viability and cell cycle distribution were measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. The expression of enhancer of zeste homolog 2 (EZH2) mRNA was measured by quantitative real time PCR (qRT-PCR). Western blot analysis was performed to examine the phosphorylation and protein expression of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p65, DNA methyltransferase 1 (DNMT1) and EZH2. Exogenous expression of p65, DNMT1, and EZH2 were carried out by transient transfection assays. Promoter activity of EZH2 gene was determined using Secrete-Pair Dual Luminescence Assay Kit. A xenografted tumor model in nude mice and bioluminescent imaging system were used to further test the effect of PPI in vivo. RESULTS: We showed that PPI significantly inhibited growth and induced cell cycle arrest of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Mechanistically, we found that PPI increased the phosphorylation of SAPK/JNK, reduced protein expression of p65 and DNMT1. The inhibitor of SAPK/JNK (SP600125) blocked the PPI-inhibited p65 and DNMT1 protein expression. Interestingly, exogenously expressed p65 overcame PPI-inhibited protein expression of DNMT1. Moreover, PPI reduced EZH2 protein, mRNA, and promoter activity; overexpression of EZH2 resisted the PPI-inhibited cell growth, and intriguingly, negative feedback regulation of SAPK/JNK signaling. Finally, exogenous expression of DNMT1 antagonized the PPI-suppressed EZH2 protein expression. Consistent with this, PPI inhibited tumor growth, protein expression levels of p65, DNMT1 and EZH2, and increased phosphorylation of SAPK/JNK in vivo. CONCLUSION: Our results show that PPI inhibits growth of NSCLC cells through SAPK/JNK-mediated inhibition of p65 and DNMT1 protein levels, subsequently; this results in the reduction of EZH2 gene expression. The interactions among p65, DNMT1 and EZH2, and feedback regulation of SAPK/JNK by EZH2 converge on the overall responses of PPI. This study reveals a novel mechanism for regulating EZH2 gene in response to PPI and suggests a new strategy for NSCLC associated therapy

    Inter-regulation of IGFBP1 and FOXO3a unveils novel mechanism in ursolic acid-inhibited growth of hepatocellular carcinoma cells

    Full text link
    BACKGROUND: Ursolic acid (UA), a natural pentacyclic triterpenoid, exerts anti-tumor effects in various cancer types including hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying this remain largely unknown. METHODS: Cell viability and cell cycle were examined by MTT and Flow cytometry assays. Western blot analysis was performed to measure the phosphorylation and protein expression of p38 MAPK, insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and forkhead box O3A (FOXO3a). Quantitative real-time PCR (qRT-PCR) was used to examine the mRNA levels of IGFBP1 gene. Small interfering RNAs (siRNAs) method was used to knockdown IGFBP1 gene. Exogenous expressions of IGFBP1 and FOXO3a were carried out by transient transfection assays. IGFBP1 promoter activity was measured by Secrete-Pairℱ Dual Luminescence Assay Kit. In vivo nude mice xenograft model and bioluminescent imaging system were used to confirm the findings in vitro. RESULTS: We showed that UA stimulated phosphorylation of p38 MAPK. In addition, UA increased the protein, mRNA levels, and promoter activity of IGFBP1, which was abrogated by the specific inhibitor of p38 MAPK (SB203580). Intriguingly, we showed that UA increased the expression of FOXO3a and that overexpressed FOXO3a enhanced phosphorylation of p38 MAPK, all of which were not observed in cells silencing of endogenous IGFBP1 gene. Moreover, exogenous expressed IGFBP1 strengthened UA-induced phosphorylation of p38 MAPK and FOXO3a protein expression, and more importantly, restored the effect of UA-inhibited growth in cells silencing of endogenous IGFBP1 gene. Consistent with these, UA suppressed tumor growth and increased phosphorylation of p38 MAPK, protein expressions of IGFBP1 and FOXO3a in vivo. CONCLUSION: Collectively, our results show that UA inhibits growth of HCC cells through p38 MAPK-mediated induction of IGFBP1 and FOXO3a expression. The interactions between IGFBP1 and FOXO3a, and feedback regulatory loop of p38 MAPK by IGFBP1 and FOXO3a resulting in reciprocal pathways, contribute to the overall effects of UA. This in vitro and in vivo study corroborates a potential novel mechanism by which UA controls HCC growth and implies that the rational targeting IGFBP1 and FOXO3a can be potential for the therapeutic strategy against HCC

    Repression of PDK1- and LncRNA HOTAIR-Mediated EZH2 Gene Expression Contributes to the Enhancement of Atractylenolide 1 and Erlotinib in the Inhibition of Human Lung Cancer Cells

    Get PDF
    Background/Aims: We previously showed that the major bioactive compound of Atractylodes macrocephula Koidz atractylenolide 1 (ATL-1) inhibited human lung cancer cell growth by suppressing the gene expression of 3-Phosphoinositide dependent protein kinase-1 (PDK1 or PDPK1). However, the potentially associated molecules and downstream effectors of PDK1 underlying this inhibition, particularly the mechanism for enhancing the anti-tumor effects of epidermal growth factor receptor-tyrosine-kinase inhibitors (EGFR-TKIs), remain unknown. Methods: Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Western blot analyses were performed to examine the protein expressions of PDK1 and of zeste homolog 2 (EZH2). The levels of long non-coding RNA (lncRNA) and HOX transcript antisense RNA (HOTAIR) were examined via qRT-PCR. RNA-binding protein immunoprecipitation assays were used to analyze HOTAIR interaction with EZH2. The promoter activity of the EZH2 gene was determined using Secrete-Pair Dual Luminescence Assay Kit. Exogenous expressions of PDK1, HOTAIR, and EZH2 were conducted via transient transfection assays. A xenografted tumor model was used to further evaluate the effect of ATL-1 in the presence or absence of erlotinib in vivo. Results: We showed that the combination of ATL-1 and EGFR-TKI erlotinib further inhibited growth and induced cell arrest of the human lung cancer cells, determined by both MTT and flow cytometry assays. ATL-1 inhibited the protein expression and the promoter activity of EZH2, which was reversed in cells with PDK1 overexpression. Interestingly, ATL-1 inhibited the expression levels of HOTAIR. While silencing HOTAIR inhibited the expressions of PDK1 and EZH2, overexpression of HOTAIR reduced the ATL-1-reduced PDK1 and EZH2 protein expressions and EZH2 promoter activity. In addition, ATL-1 reduced the HOTAIR binding to the EZH2 protein. Moreover, we found that exogenously expressed EZH2 antagonized the effect of ATL-1 on cell growth inhibition. Consistent with the in vitro results, ATL-1 inhibited tumor growth and the expression levels of HOTAIR, protein expressions of EZH2 and PDK1 in vivo. Importantly, there was synergy of the combination of ATL-1 and erlotinib in this process. Conclusion: Here, we provide the first evidence that ATL-1 inhibits lung cancer cell growth through inhibiting not only the PDK1 but also the lncRNA HOTAIR, which results in the reduction of one downstream effector EZH2 expression. The novel interplay between the HOTAIR and EZH2, as well as repressions of the PDK1 and HOTAIR coordinate the overall effects of ATL-1. Importantly, the combination of ATL-1 and EGFR-TKI erlotinib exhibits synergy. Thus, targeting the PDK1- and HOTAIR-mediated downstream molecule EZH2 by the combination of ATL-1 and erlotinib potentially facilitates the development of an additional novel strategy to combat lung cancer
    • 

    corecore