238 research outputs found
A Coordinate System for Gaussian Networks
This paper studies network information theory problems where the external
noise is Gaussian distributed. In particular, the Gaussian broadcast channel
with coherent fading and the Gaussian interference channel are investigated. It
is shown that in these problems, non-Gaussian code ensembles can achieve higher
rates than the Gaussian ones. It is also shown that the strong Shamai-Laroia
conjecture on the Gaussian ISI channel does not hold. In order to analyze
non-Gaussian code ensembles over Gaussian networks, a geometrical tool using
the Hermite polynomials is proposed. This tool provides a coordinate system to
analyze a class of non-Gaussian input distributions that are invariant over
Gaussian networks
Achievability of Nonlinear Degrees of Freedom in Correlatively Changing Fading Channels
A new approach toward the noncoherent communications over the time varying
fading channels is presented. In this approach, the relationship between the
input signal space and the output signal space of a correlatively changing
fading channel is shown to be a nonlinear mapping between manifolds of
different dimensions. Studying this mapping, it is shown that using nonlinear
decoding algorithms for single input-multiple output (SIMO) and multiple input
multiple output (MIMO) systems, extra numbers of degrees of freedom (DOF) are
available. We call them the nonlinear degrees of freedom
Writing on Fading Paper and Causal Transmitter CSI
A wideband fading channel is considered with causal channel state information
(CSI) at the transmitter and no receiver CSI. A simple orthogonal code with
energy detection rule at the receiver (similar to [6]) is shown to achieve the
capacity of this channel in the limit of large bandwidth. This code transmits
energy only when the channel gain is large enough. In this limit, this capacity
without any receiver CSI is the same as the capacity with full receiver CSI--a
phenomenon also true for dirty paper coding. For Rayleigh fading, this capacity
(per unit time) is proportional to the logarithm of the bandwidth. Our coding
scheme is motivated from the Gel'fand-Pinsker [2,3] coding and dirty paper
coding [4]. Nonetheless, for our case, only causal CSI is required at the
transmitter in contrast with dirty-paper coding and Gel'fand-Pinsker coding,
where non-causal CSI is required.
Then we consider a general discrete channel with i.i.d. states. Each input
has an associated cost and a zero cost input "0" exists. The channel state is
assumed be to be known at the transmitter in a causal manner. Capacity per unit
cost is found for this channel and a simple orthogonal code is shown to achieve
this capacity. Later, a novel orthogonal coding scheme is proposed for the case
of causal transmitter CSI and a condition for equivalence of capacity per unit
cost for causal and non-causal transmitter CSI is derived. Finally, some
connections are made to the case of non-causal transmitter CSI in [8]
The Linear Information Coupling Problems
Many network information theory problems face the similar difficulty of
single-letterization. We argue that this is due to the lack of a geometric
structure on the space of probability distribution. In this paper, we develop
such a structure by assuming that the distributions of interest are close to
each other. Under this assumption, the K-L divergence is reduced to the squared
Euclidean metric in an Euclidean space. In addition, we construct the notion of
coordinate and inner product, which will facilitate solving communication
problems. We will present the application of this approach to the
point-to-point channel, general broadcast channel, and the multiple access
channel (MAC) with the common source. It can be shown that with this approach,
information theory problems, such as the single-letterization, can be reduced
to some linear algebra problems. Moreover, we show that for the general
broadcast channel, transmitting the common message to receivers can be
formulated as the trade-off between linear systems. We also provide an example
to visualize this trade-off in a geometric way. Finally, for the MAC with the
common source, we observe a coherent combining gain due to the cooperation
between transmitters, and this gain can be quantified by applying our
technique.Comment: 27 pages, submitted to IEEE Transactions on Information Theor
Linear Information Coupling Problems
Many network information theory problems face the similar difficulty of
single letterization. We argue that this is due to the lack of a geometric
structure on the space of probability distribution. In this paper, we develop
such a structure by assuming that the distributions of interest are close to
each other. Under this assumption, the K-L divergence is reduced to the squared
Euclidean metric in an Euclidean space. Moreover, we construct the notion of
coordinate and inner product, which will facilitate solving communication
problems. We will also present the application of this approach to the
point-to-point channel and the general broadcast channel, which demonstrates
how our technique simplifies information theory problems.Comment: To appear, IEEE International Symposium on Information Theory, July,
201
Fundamental Limits of Communication with Low Probability of Detection
This paper considers the problem of communication over a discrete memoryless
channel (DMC) or an additive white Gaussian noise (AWGN) channel subject to the
constraint that the probability that an adversary who observes the channel
outputs can detect the communication is low. Specifically, the relative entropy
between the output distributions when a codeword is transmitted and when no
input is provided to the channel must be sufficiently small. For a DMC whose
output distribution induced by the "off" input symbol is not a mixture of the
output distributions induced by other input symbols, it is shown that the
maximum amount of information that can be transmitted under this criterion
scales like the square root of the blocklength. The same is true for the AWGN
channel. Exact expressions for the scaling constant are also derived.Comment: Version to appear in IEEE Transactions on Information Theory; minor
typos in v2 corrected. Part of this work was presented at ISIT 2015 in Hong
Kon
On Non-coherent MIMO Channels in the Wideband Regime: Capacity and Reliability
We consider a multiple-input, multiple-output (MIMO) wideband Rayleigh block
fading channel where the channel state is unknown to both the transmitter and
the receiver and there is only an average power constraint on the input. We
compute the capacity and analyze its dependence on coherence length, number of
antennas and receive signal-to-noise ratio (SNR) per degree of freedom. We
establish conditions on the coherence length and number of antennas for the
non-coherent channel to have a "near coherent" performance in the wideband
regime. We also propose a signaling scheme that is near-capacity achieving in
this regime.
We compute the error probability for this wideband non-coherent MIMO channel
and study its dependence on SNR, number of transmit and receive antennas and
coherence length. We show that error probability decays inversely with
coherence length and exponentially with the product of the number of transmit
and receive antennas. Moreover, channel outage dominates error probability in
the wideband regime. We also show that the critical as well as cut-off rates
are much smaller than channel capacity in this regime
Probabilistic Clustering Using Maximal Matrix Norm Couplings
In this paper, we present a local information theoretic approach to
explicitly learn probabilistic clustering of a discrete random variable. Our
formulation yields a convex maximization problem for which it is NP-hard to
find the global optimum. In order to algorithmically solve this optimization
problem, we propose two relaxations that are solved via gradient ascent and
alternating maximization. Experiments on the MSR Sentence Completion Challenge,
MovieLens 100K, and Reuters21578 datasets demonstrate that our approach is
competitive with existing techniques and worthy of further investigation.Comment: Presented at 56th Annual Allerton Conference on Communication,
Control, and Computing, 201
- …