91,668 research outputs found
An innovation-focused roadmap for a sustainable global photovoltaic industry
The solar photovoltaic (PV) industry has undergone a dramatic evolution over the past decade, growing at an average rate of 48 percent per year to a global market size of 31. GW in 2012, and with the price of crystalline-silicon PV module as low as $0.72/W in September 2013. To examine this evolution we built a comprehensive dataset from 2000 to 2012 for the PV industries in the United States, China, Japan, and Germany, which we used to develop a model to explain the dynamics among innovation, manufacturing, and market. A two-factor learning curve model is constructed to make explicit the effect of innovation from economies of scale. The past explosive growth has resulted in an oversupply problem, which is undermining the effectiveness of "demand-pull" policies that could otherwise spur innovation. To strengthen the industry we find that a policy shift is needed to balance the excitement and focus on market forces with a larger commitment to research and development funding. We use this work to form a set of recommendations and a roadmap that will enable a next wave of innovation and thus sustainable growth of the PV industry into a mainstay of the global energy economy. © 2013 Elsevier Ltd
Survival mediation analysis with the death-truncated mediator: The completeness of the survival mediation parameter
In medical research, the development of mediation analysis with a survival outcome has facilitated investigation into causal mechanisms. However, studies have not discussed the death-truncation problem for mediators, the problem being that conventional mediation parameters cannot be well-defined in the presence of a truncated mediator. In the present study, we systematically defined the completeness of causal effects to uncover the gap, in conventional causal definitions, between the survival and nonsurvival settings. We proposed three approaches to redefining the natural direct and indirect effects, which are generalized forms of the conventional causal effects for survival outcomes. Furthermore, we developed three statistical methods for the binary outcome of the survival status and formulated a Cox model for survival time. We performed simulations to demonstrate that the proposed methods are unbiased and robust. We also applied the proposed method to explore the effect of hepatitis C virus infection on mortality, as mediated through hepatitis B viral load
Non-Divergence of Unipotent Flows on Quotients of Rank One Semisimple Groups
Let be a semisimple Lie group of rank and be a torsion free
discrete subgroup of . We show that in , given , any
trajectory of a unipotent flow remains in the set of points with injectivity
radius larger than for proportion of the time for some
. The result also holds for any finitely generated discrete subgroup
and this generalizes Dani's quantitative nondivergence theorem
\cite{D} for lattices of rank one semisimple groups. Furthermore, for a fixed
there exists an injectivity radius such that for any
unipotent trajectory , either it spends at least
proportion of the time in the set with injectivity radius larger
than for all large or there exists a
-normalized abelian subgroup of which
intersects in a small covolume lattice. We also extend these
results when is the product of rank- semisimple groups and a
discrete subgroup of whose projection onto each nontrivial factor is
torsion free.Comment: 23 page
Signal detection for non-orthogonal space-time block coding over time-selective fading channels
In the case of non-quasi-static (i.e., time-selective fast fading) channels, which do exist in practice, the performance of the existing NO-STBC detectors can suffer from an irreducible error floor. To this end, this letter proposes a zero-forcing-based signal detector, which is not only computationally simple but also highly effective in mitigating the impact of channel variation on system performance
The Halo Occupation Distribution of X-ray-Bright Active Galactic Nuclei: A Comparison with Luminous Quasars
We perform halo occupation distribution (HOD) modeling of the projected
two-point correlation function (2PCF) of high-redshift (z~1.2) X-ray-bright
active galactic nuclei (AGN) in the XMM-COSMOS field measured by Allevato et
al. The HOD parameterization is based on low-luminosity AGN in cosmological
simulations. At the median redshift of z~1.2, we derive a median mass of
(1.02+0.21/-0.23)x10^{13} Msun/h for halos hosting central AGN and an upper
limit of ~10% on the AGN satellite fraction. Our modeling results indicate (at
the 2.5-sigma level) that X-ray AGN reside in more massive halos compared to
more bolometrically luminous, optically-selected quasars at similar redshift.
The modeling also yields constraints on the duty cycle of the X-ray AGN, and we
find that at z~1.2 the average duration of the X-ray AGN phase is two orders of
magnitude longer than that of the quasar phase. Our inferred mean occupation
function of X-ray AGN is similar to recent empirical measurements with a group
catalog and suggests that AGN halo occupancy increases with increasing halo
mass. We project the XMM-COSMOS 2PCF measurements to forecast the required
survey parameters needed in future AGN clustering studies to enable higher
precision HOD constraints and determinations of key physical parameters like
the satellite fraction and duty cycle. We find that N^{2}/A~5x10^{6} deg^{-2}
(with N the number of AGN in a survey area of A deg^{2}) is sufficient to
constrain the HOD parameters at the 10% level, which is easily achievable by
upcoming and proposed X-ray surveys.Comment: 11 pages, 4 figures, accepted in Ap
Projector operators for the no-core shell model
Projection operators for the use within ab initio no-core shell model, are
suggested.Comment: 3 page
Signal detection for orthogonal space-time block coding over time-selective fading channels: A PIC approach for the G(i) systems
One major assumption in all orthogonal space-time block coding (O-STBC) schemes is that the channel remains static over the entire length of the codeword. However, time selective fading channels do exist, and in such case the conventional O-STBC detectors can suffer from a large error floor in the high signal-to-noise ratio (SNR) cases. This paper addresses such an issue by introducing a parallel interference cancellation (PIC) based detector for the G(i) coded systems (i = 3 and 4)
A quantitative image analysis pipeline for the characterization of filamentous fungal morphologies as a tool to uncover targets for morphology engineering: a case study using aplD in Aspergillus niger
Background
Fungal fermentation is used to produce a diverse repertoire of enzymes, chemicals, and drugs for various industries. During submerged cultivation, filamentous fungi form a range of macromorphologies, including dispersed mycelia, clumped aggregates, or pellets, which have critical implications for rheological aspects during fermentation, gas/nutrient transfer, and, thus, product titres. An important component of strain engineering efforts is the ability to quantitatively assess fungal growth phenotypes, which will drive novel leads for morphologically optimized production strains.
Results
In this study, we developed an automated image analysis pipeline to quantify the morphology of pelleted and dispersed growth (MPD) which rapidly and reproducibly measures dispersed and pelleted macromorphologies from any submerged fungal culture. It (i) enables capture and analysis of several hundred images per user/day, (ii) is designed to quantitatively assess heterogeneous cultures consisting of dispersed and pelleted forms, (iii) gives a quantitative measurement of culture heterogeneity, (iv) automatically generates key Euclidian parameters for individual fungal structures including particle diameter, aspect ratio, area, and solidity, which are also assembled into a previously described dimensionless morphology number MN, (v) has an in-built quality control check which enables end-users to easily confirm the accuracy of the automated calls, and (vi) is easily adaptable to user-specified magnifications and macromorphological definitions. To concomitantly provide proof of principle for the utility of this image analysis pipeline, and provide new leads for morphologically optimized fungal strains, we generated a morphological mutant in the cell factory Aspergillus niger based on CRISPR-Cas technology. First, we interrogated a previously published co-expression networks for A. niger to identify a putative gamma-adaptin encoding gene (aplD) that was predicted to play a role in endosome cargo trafficking. Gene editing was used to generate a conditional aplD expression mutant under control of the titratable Tet-on system. Reduced aplD expression caused a hyperbranched growth phenotype and diverse defects in pellet formation with a putative increase in protein secretion. This possible protein hypersecretion phenotype could be correlated with increased dispersed mycelia, and both decreased pellet diameter and MN.
Conclusion
The MPD image analysis pipeline is a simple, rapid, and flexible approach to quantify diverse fungal morphologies. As an exemplar, we have demonstrated that the putative endosomal transport gene aplD plays a crucial role in A. niger filamentous growth and pellet formation during submerged culture. This suggests that endocytic components are underexplored targets for engineering fungal cell factories.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli
Hydration-induced anisotropic spin fluctuations in Na_{x}CoO_{2}\cdot1.3H_{2}O superconductor
We report ^{59}Co NMR studies in single crystals of cobalt oxide
superconductor Na_{0.42}CoO_{2}\cdot1.3H_{2}O (T_c=4.25K) and its parent
compound Na_{0.42}CoO_{2}. We find that both the magnitude and the temperature
(T) dependence of the Knight shifts are identical in the two compounds above
T_c. The spin-lattice relaxation rate (1/T_1) is also identical above T_0
\sim60 K for both compounds. Below T_0, the unhydrated sample is found to be a
non-correlated metal that well conforms to Fermi liquid theory, while spin
fluctuations develop in the superconductor. These results indicate that water
intercalation does not change the density of states but its primary role is to
bring about spin fluctuations. Our result shows that, in the hydrated
superconducting compound, the in-plane spin fluctuation around finite wave
vector is much stronger than that along the c-axis, which indicates that the
spin correlation is quasi-two-dimensional.Comment: 4 pages, 5 figure
- …