9,128 research outputs found

    Is Gamma-ray Absorption by Induced Electric Fields Important in the Pulsar Magnetospheres?

    Full text link
    Although the unified formula for gamma-ray absorption process involving both the magnetic field and a perpendicular electric field derived by Daugherty & Lerche (1975) is correct, we argued in this paper that their conclusion that the induced electric fields are important in the pair formation process in the pulsar magnetospheres is wrong and misleading. The key point is that usually the direction of a gamma photon at the emission point observed in the laboratory frame should be (v/c, 0, [1-(v/c)^2]^{1/2}) rather than (0, 0, 1), where v is the co-rotating velocity. This emission direction is just the one which results in zero attenuation coefficient of the gamma photon. Calculation shows that after the photon has moved a distance, its direction lead to the result that the induced electric field is also of minor importance. Thus only gamma-B process is the important mechanism for the pair production in the pulsar magnetospheres. The implications of the modification by ejecting the induced electric field are also discussed.Comment: 4 pages, 2 Postscript figures, LaTeX, some miscomments on the references of Harding et al are modified, Accepted for publication in Astronomy and Astrophysics Letter

    DJpsiFDC: an event generator for the process ggJ/ψJ/ψgg\to J/\psi J/\psi at LHC

    Full text link
    DJpsiFDC is an event generator package for the process ggJ/ψJ/ψgg\to J/\psi J/\psi. It generates events for primary leading-order 222\to 2 processes. The package could generate a LHE document and this document could easily be embedded into detector simulation software frameworks. The package is produced in Fortran codes.Comment: 10 pages, 3 figure

    Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow

    Get PDF
    We propose a method to classify cardiac pathology based on a novel approach to extract image derived features to characterize the shape and motion of the heart. An original semi-supervised learning procedure, which makes efficient use of a large amount of non-segmented images and a small amount of images segmented manually by experts, is developed to generate pixel-wise apparent flow between two time points of a 2D+t cine MRI image sequence. Combining the apparent flow maps and cardiac segmentation masks, we obtain a local apparent flow corresponding to the 2D motion of myocardium and ventricular cavities. This leads to the generation of time series of the radius and thickness of myocardial segments to represent cardiac motion. These time series of motion features are reliable and explainable characteristics of pathological cardiac motion. Furthermore, they are combined with shape-related features to classify cardiac pathologies. Using only nine feature values as input, we propose an explainable, simple and flexible model for pathology classification. On ACDC training set and testing set, the model achieves 95% and 94% respectively as classification accuracy. Its performance is hence comparable to that of the state-of-the-art. Comparison with various other models is performed to outline some advantages of our model

    Direct simulation and reduced-order modeling of premixed flame response to acoustic modulation

    Get PDF
    This dissertation introduces a general, predictive and cost-efficient reduced-order modeling (ROM) technique for characterization of flame response under acoustic modulation. The model is built upon the kinematic flame model–G-equation to describe the flame topology and dynamics, and the novelties of the ROM lie in i) a procedure to create the compatible base flow that can reproduce the correct flame geometry and ii) the use of a physically-consistent acoustic modulation field for the characterization of flame response. This ROM addresses the significant limitations of the classical kinematic model, which is only applicable to simple flame configurations and relies on ad-hoc models for the modulation field. The ROM is validated by considering the acoustically-excited premixed methane/air flames in conical and M-shape configurations. To test the model availability to practical burners, a confined flame configuration is also employed for model evaluation. Furthermore, to investigate the generality of the ROM to the burner flame, the performance of the ROM with respect to the V-shape and the swirled V-shape is investigated. The model accuracy is evaluated concerning flame geometrical features and flame describing function, and assessed by comparing the ROM results with both experimental measurements and direct- numerical-simulation results. It is found that the flame describing/transfer functions predicted by the ROM compare well with reference data, and are more accurate than those obtained from the conventional kinematic model built upon heuristically-presumed modulation fields

    Transition behavior of k-surface from hyperbola to ellipse

    Get PDF
    The transition behavior of the k-surface of a lossy anisotropic indefinite slab is investigated. It is found that, if the material loss is taken into account, the k-surface does not show a sudden change from hyperbola to the ellipse when one principle element of the permittivity tensor changes from negative to positive. In fact, after introducing a small material loss, the shape of the k-surface can be a combination of a hyperbola and an ellipse, and a selective high directional transmission can be obtained in such a slab
    corecore