13 research outputs found

    Detection beyond the Debye Screening Length in a High-Frequency Nanoelectronic Biosensor

    No full text
    Nanosensors based on the unique electronic properties of nanotubes and nanowires offer high sensitivity and have the potential to revolutionize the field of Point-of-Care (POC) medical diagnosis. The direct current (dc) detection of a wide array of organic and inorganic molecules has been demonstrated on these devices. However, sensing mechanism based on measuring changes in dc conductance fails at high background salt concentrations, where the sensitivity of the devices suffers from the ionic screening due to mobile ions present in the solution. Here, we successfully demonstrate that the fundamental ionic screening effect can be mitigated by operating single-walled carbon nanotube field effect transistor as a high-frequency biosensor. The nonlinear mixing between the alternating current excitation field and the molecular dipole field can generate mixing current sensitive to the surface-bound biomolecules. Electrical detection of monolayer streptavidin binding to biotin in 100 mM buffer solution is achieved at a frequency beyond 1 MHz. Theoretical modeling confirms improved sensitivity at high frequency through mitigation of the ionic screening effect. The results should promise a new biosensing platform for POC detection, where biosensors functioning directly in physiologically relevant condition are desired

    Graphene Ambipolar Nanoelectronics for High Noise Rejection Amplification

    No full text
    In a modern wireless communication system, signal amplification is critical for overcoming losses during multiple data transformations/processes and long-distance transmission. Common mode and differential mode are two fundamental amplification mechanisms, and they utilize totally different circuit configurations. In this paper, we report a new type of dual-gate graphene ambipolar device with capability of operating under both common and differential modes to realize signal amplification. The signal goes through two stages of modulation where the phase of signal can be individually modulated to be either in-phase or out-of-phase at two stages by exploiting the ambipolarity of graphene. As a result, both common and differential mode amplifications can be achieved within one single device, which is not possible in the conventional circuit configuration. In addition, a common-mode rejection ratio as high as 80 dB can be achieved, making it possible for low noise circuit application. These results open up new directions of graphene-based ambipolar electronics that greatly simplify the RF circuit complexity and the design of multifunction device operation

    Evidence for Extraction of Photoexcited Hot Carriers from Graphene

    No full text
    We report evidence of nonequilibrium hot carrier extraction from graphene by gate-dependent photocurrent study. Scanning photocurrent excited by femtosecond pulse laser shows unusual gate dependence compared with continuous wave (CW) laser excitation. Power dependence studies further confirm that the photocarriers extracted at the metal/graphene contact are nonequilibrium hot carriers. Hot carrier extraction is found to be most efficient near the Dirac point where carrier lifetime reaches a maximum. These observations not only provide evidence of hot carrier extraction from graphene but also open the door for graphene-based hot carrier optoelectronics

    The 8/9.8

    No full text
    <p> <b>F rigid ureteroscope (Richard Wolf, German).</b></p

    Patient, stone demographics and operative characteristics.

    No full text
    <p>ESWL: extracorporeal shock wave lithotripsy.</p><p>PCNL: percutaneous nephrolithotomy.</p><p>GFR: glomerular filtration rate.</p><p>SD: standard deviation.</p

    Ultrafast Lateral Photo-Dember Effect in Graphene Induced by Nonequilibrium Hot Carrier Dynamics

    No full text
    The photo-Dember effect arises from the asymmetric diffusivity of photoexcited electrons and holes, which creates a transient spatial charge distribution and hence the buildup of a voltage. Conventionally, a strong photo-Dember effect is only observed in semiconductors with a large asymmetry between the electron and hole mobilities, such as in GaAs or InAs, and is considered negligible in graphene due to its electron–hole symmetry. Here, we report the observation of a strong lateral photo-Dember effect induced by nonequilibrium hot carrier dynamics when exciting a graphene–metal interface with a femtosecond laser. Scanning photocurrent measurements reveal the extraction of photoexcited hot carriers is driven by the transient photo-Dember field, and the polarity of the photocurrent is determined by the device’s mobility asymmetry. Furthermore, ultrafast pump–probe measurements indicate the magnitude of photocurrent is related to the hot carrier cooling rate. Our simulations also suggest that the lateral photo-Dember effect originates from graphene’s 2D nature combined with its unique electrical and optical properties. Taken together, these results not only reveal a new ultrafast photocurrent generation mechanism in graphene but also suggest new types of terahertz sources based on 2D nanomaterials
    corecore