1 research outputs found
Theoretical Investigation of the Reaction of Mn<sup>+</sup> with Ethylene Oxide
The potential energy surfaces of Mn<sup>+</sup> reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO<sup>+</sup>, MnO, MnCH<sub>2</sub><sup>+</sup>, MnCH<sub>3</sub>, and MnH<sup>+</sup> are described in detail. Two types of encounter complexes of Mn<sup>+</sup> with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn<sup>+</sup> would insert into a C–O bond or the C–C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO<sup>+</sup>/MnO and MnH<sup>+</sup> are formed in the C–O activation mechanism, while both C–O and C–C activations account for the MnCH<sub>2</sub><sup>+</sup>/MnCH<sub>3</sub> formation. Products MnO<sup>+</sup>, MnCH<sub>2</sub><sup>+</sup>, and MnH<sup>+</sup> could be formed adiabatically on the quintet surface, while formation of MnO and MnCH<sub>3</sub> is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a<sup>5</sup>D is calculated to be more reactive than the ground state a<sup>7</sup>S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations