824 research outputs found

    Effects of dynamic wetting and liquid-solid slip on self-propelled nanodrops in tapered nanochannels

    Get PDF
    Drops inside tapered microchannels exhibit self-propelled behavior, driven by the capillary pressure gradient within the drops. This driven force may be balanced by the viscous drag and the contact line drag to determine the drop displacement, in analogy to the way to predict capillary imbibition. However, how the drops move exactly with time at the nanoscale is unclear. This study employs molecular dynamics simulations to explore the dynamics of nanodrops within tapered channels with hydrophobic and hydrophilic coatings. The simulations reveal that in a hydrophobic tapered channel, drops migrate toward the wider side of the channel but may halt midway as the driving pressure approaches zero during their movements. Conversely, in hydrophilic tapered channels, drops move unlimitedly toward the channel's tip. Incorporating considerations for dynamic contact angles based on the molecular kinetic theory and liquid-solid slip, a theoretical model is derived that accurately predicts the drop displacement observed in molecular simulations without free parameters. In our simulations of drop motion in hydrophilic tapered channels, the drop displacement x is found linear with time x ∼ t , as the viscous drag is dominant and the slip length is small. However, the theory further predicts that drop displacement may behave as x 2 ∼ t when slip length is large. Conversely, under dominant contact line drag, the theory predicts x 3 ∼ t for drop motion in tapered nanoslits. These findings underscore the critical influence of dynamic wetting and liquid-solid slip in precisely predicting drop motions on solid surfaces at the nanoscale.</p

    XCon: Learning with Experts for Fine-grained Category Discovery

    Full text link
    We address the problem of generalized category discovery (GCD) in this paper, i.e. clustering the unlabeled images leveraging the information from a set of seen classes, where the unlabeled images could contain both seen classes and unseen classes. The seen classes can be seen as an implicit criterion of classes, which makes this setting different from unsupervised clustering where the cluster criteria may be ambiguous. We mainly concern the problem of discovering categories within a fine-grained dataset since it is one of the most direct applications of category discovery, i.e. helping experts discover novel concepts within an unlabeled dataset using the implicit criterion set forth by the seen classes. State-of-the-art methods for generalized category discovery leverage contrastive learning to learn the representations, but the large inter-class similarity and intra-class variance pose a challenge for the methods because the negative examples may contain irrelevant cues for recognizing a category so the algorithms may converge to a local-minima. We present a novel method called Expert-Contrastive Learning (XCon) to help the model to mine useful information from the images by first partitioning the dataset into sub-datasets using k-means clustering and then performing contrastive learning on each of the sub-datasets to learn fine-grained discriminative features. Experiments on fine-grained datasets show a clear improved performance over the previous best methods, indicating the effectiveness of our method

    Towards Fairness-aware Crowd Management System and Surge Prevention in Smart Cities

    Full text link
    Instances of casualties resulting from large crowds persist, highlighting the existing limitations of current crowd management practices in Smart Cities. One notable drawback is the insufficient provision for disadvantaged individuals who may require additional time to evacuate due to their slower running speed. Moreover, the existing escape strategies may fall short of ensuring the safety of all individuals during a crowd surge. To address these pressing concerns, this paper proposes two crowd management methodologies. Firstly, we advocate for implementing a fair evacuation strategy following a surge event, which considers the diverse needs of all individuals, ensuring inclusivity and mitigating potential risks. Secondly, we propose a preventative approach involving the adjustment of attraction locations and switching between stage performances in large-crowded events to minimize the occurrence of surges and enhance crowd dispersion. We used high-fidelity crowd management simulators to assess the effectiveness of our proposals. Our findings demonstrate the positive impact of the fair evacuation strategy on safety measures and inclusivity, which increases fairness by 41.8% on average. Furthermore, adjusting attraction locations and stage performances has shown a significant reduction in surges by 34% on average, enhancing overall crowd safety

    Revisiting Nyquist-Like Impedance-Based Criteria for Converter-Based AC Systems

    Full text link
    Multiple types of Nyquist-like impedance-based criteria are utilized for the small-signal stability analysis of converter-based AC systems. It is usually considered that the determinant-based criterion can determine the overall stability of a system while the eigenvalue-based criterion can give more insights into the mechanism of the instability. This paper specifies such understandings starting with the zero-pole calculation of impedance matrices obtained by state-spaces with the Smith-McMillan form, then clarifying the absolute reliability of determinant-based criterion with the common assumption for impedance-based analysis that each subsystem can stably operate before the interconnection. However, ambiguities do exist for the eigenvalue-based criterion when an anticlockwise encirclement around the origin is observed in the Nyquist plot. To this end, a logarithmic derivative-based criterion to directly identify the system modes using the frequency responses of loop impedances is proposed, which owns a solid theoretical basis of the Schur complement of transfer function matrices. The theoretical analysis is validated using a PSCAD simulation of a grid-connected two-level voltage source converter.Comment: Accepted by CSEE JPE

    Slip-enhanced Rayleigh-Plateau instability of a liquid film on a fibre

    Get PDF
    Boundary conditions at a liquid-solid interface are crucial to dynamics of a liquid film coated on a fibre. Here a theoretical framework based on axisymmetric Stokes equations is developed to explore the influence of liquid-solid slip on the Rayleigh-Plateau instability of a cylindrical film on a fibre. The new model not only shows that the slip-enhanced growth rate of perturbations is overestimated by the classical lubrication model, but also indicates a slip-dependent dominant wavelength, instead of a constant value obtained by the lubrication method, which leads to larger drops formed on a more slippery fibre. The theoretical findings are validated by direct numerical simulations of Navier-Stokes equations via a volume-of-fluid method. Additionally, the slip-dependent dominant wavelengths predicted by our model agree with the experimental results provided by Haefner. et al.[Nat. Commun., Vol. 6(1), 2015, 18 pp. 1-6]

    Toward high-performance nanostructured thermoelectric materials: The progress of bottom-up solution chemistry approaches

    Get PDF
    Significant research effort has recently gone into the synthesis of thermoelectric nanomaterials through different chemical approaches since nanomaterials chemistry became a promising strategy for improving thermoelectric performance. Different thermoelectric nanocrystals, especially PbTe, Bi2Te3 and CoSb3, with various compositions and morphologies have been successfully prepared by solvo/hydrothermal, electrochemical, and ligand-based synthesis methods. Such nanoscale materials show not only substantial reduction in thermal conductivity due to increased phonon scattering at nanoscale grain boundaries and lower densities of phonon states but possibly also an enhancement in thermopower due to electronic quantum size effects. More recently, the notoriously low power factors of thermoelectric nanomaterials prepared by wet chemistry have been significantly improved by using an increasingly cross-disciplinary approach towards the bottom-up synthesis that combines expertise from chemistry, physics, and materials engineering. In this review, we discuss the recent progress and current challenges of preparing thermoelectric nanomaterials with solution-based chemistry approaches

    Photocatalytic Activity of MOF-derived Cu2O/Cu/C/Ag Porous Composites

    Get PDF
    Cu2O/Cu/C/Ag porous composite was synthesized by heat-treatment and wet-chemical method using a typical metal-organic framework (Cu-BTC) as  precursor. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and  ultraviolet-visible spectroscopy (UV-vis). The results showed that the originalstructure of Cu-BTC was retained by high temperature calcination in nitrogen atmosphere. Uniform doping of Cu, C and Ag provided a triple trapping of photogenerated electron hole pairs and the Cu2O/Cu/C/Ag exhibited an enhanced photocatalytic activity for degradation of Congo Red under visible light irradiation. Heat-treatment of the MOFs with high temperature is afacile and effective way for preparation of photocatalytic composite with desirable properties.Keywords: Photocatalyst, cuprous oxide, dye degradation, Cu-BTC

    Coupled hydro-mechanical evolution of fracture permeability in sand injectite intrusions

    Get PDF
    Acknowledgments The authors would like to thank the support in using FracPaQ from Roberto Rizzo in the University of Aberdeen. We also appreciate the financial support from the Laboratory of Coal Resources and Safe Mining (China University of Mining and Technology, Beijing) (Grant No. SKLCRSM16KFC01).Peer reviewedPublisher PD
    corecore