141 research outputs found
Will More Expressive Graph Neural Networks do Better on Generative Tasks?
Graph generation poses a significant challenge as it involves predicting a
complete graph with multiple nodes and edges based on simply a given label.
This task also carries fundamental importance to numerous real-world
applications, including de-novo drug and molecular design. In recent years,
several successful methods have emerged in the field of graph generation.
However, these approaches suffer from two significant shortcomings: (1) the
underlying Graph Neural Network (GNN) architectures used in these methods are
often underexplored; and (2) these methods are often evaluated on only a
limited number of metrics. To fill this gap, we investigate the expressiveness
of GNNs under the context of the molecular graph generation task, by replacing
the underlying GNNs of graph generative models with more expressive GNNs.
Specifically, we analyse the performance of six GNNs in two different
generative frameworks -- autoregressive generation models, such as GCPN and
GraphAF, and one-shot generation models, such as GraphEBM -- on six different
molecular generative objectives on the ZINC-250k dataset. Through our extensive
experiments, we demonstrate that advanced GNNs can indeed improve the
performance of GCPN, GraphAF, and GraphEBM on molecular generation tasks, but
GNN expressiveness is not a necessary condition for a good GNN-based generative
model. Moreover, we show that GCPN and GraphAF with advanced GNNs can achieve
state-of-the-art results across 17 other non-GNN-based graph generative
approaches, such as variational autoencoders and Bayesian optimisation models,
on the proposed molecular generative objectives (DRD2, Median1, Median2), which
are important metrics for de-novo molecular design.Comment: 2nd Learning on Graphs Conference (LoG 2023). 26 pages, 5 figures, 11
table
Nonlinear dynamics modeling and analysis of disc brake squeal considering acting process of brake force
Disc brake squeal of automobile is one of the hottest and most difficult issues concerned by automobile manufacturers and researchers. Considering the acting process of brake force, a simplified nonlinear dynamics model is developed in this paper. The nonlinear dynamics equations are set up and solved by theoretical method and numerical calculation. By studying the effects of key parameters on the system’s behavior, the mechanism of brake squeal are analyzed and discussed. The results indicate that the state of system is more sensitive to the fluctuation of brake force than the variation of the negative slope of friction coefficient against the relative velocity between pad and disc. The dynamic characteristics of brake system are greatly connected with the components stiffness. The brake system may become weakly stable and easily produce brake squeal when tangential contact stiffness, normal contact stiffness and connection stiffness satisfy a certain relationship
Impacts of FDI Renewable Energy Technology Spillover on China's Energy Industry Performance
Environmental friendly renewable energy plays an indispensable role in energy industry development. Foreign direct investment (FDI) in advanced renewable energy technology spillover is promising to improve technological capability and promote China’s energy industry performance growth. In this paper, the impacts of FDI renewable energy technology spillover on China’s energy industry performance are analyzed based on theoretical and empirical studies. Firstly, three hypotheses are proposed to illustrate the relationships between FDI renewable energy technology spillover and three energy industry performances including economic, environmental, and innovative performances. To verify the hypotheses, techniques including factor analysis and data envelopment analysis (DEA) are employed to quantify the FDI renewable energy technology spillover and the energy industry performance of China, respectively. Furthermore, a panel data regression model is proposed to measure the impacts of FDI renewable energy technology spillover on China’s energy industry performance. Finally, energy industries of 30 different provinces in China based on the yearbook data from 2005 to 2011 are comparatively analyzed for evaluating the impacts through the empirical research. The results demonstrate that FDI renewable energy technology spillover has positive impacts on China’s energy industry performance. It can also be found that the technology spillover effects are more obvious in economic and technological developed regions. Finally, four suggestions are provided to enhance energy industry performance and promote renewable energy technology spillover in China
Molecular Epidemiology and Risk Factors of Ventilator-Associated Pneumonia Infection Caused by Carbapenem-Resistant Enterobacteriaceae
Ventilator-associated pneumonia (VAP) infection caused by carbapenem-resistant Enterobacteriaceae (CRE) is becoming more prevalent, thus seriously affecting patient outcomes. In this paper, we studied the drug resistance mechanism and epidemiological characteristics of CRE, and analyzed the infection and prognosis factors of VAP caused by CRE, to provide evidence for effective control of nosocomial infection in patients with VAP. A total of 58 non-repetitive CRE strains of VAP were collected from January 2016 to June 2018. To explore the risk factors of CRE infection, 1:2 group case control method was used to select non CRE infection patients at the same period as the control group. Among the 58 CRE strains, the most common isolates included Klebsiella pneumoniae and Escherichia coli. All strains were sensitive to polymyxin B, which features better sensitivity to other antibiotics such as minocycline, trimethoprim/sulfamethoxazole, and amikacin. Multiple drug resistance genes were detected at the same time in most strains. KPC-2 was the most common carbapenemase-resistant gene in Klebsiella pneumoniae, whereas NDM-1 was more common in Escherichia coli. The risk factors correlated with CRE infection included intensive care unit (ICU) occupancy time >7 days (OR = 2.793; 95% CI 1.439~5.421), antibiotic exposure during hospital stay including those to enzyme inhibitors (OR = 1.977; 95% CI 1.025~3.812), carbapenems (OR = 3.268; 95% CI 1.671~6.392), antibiotic combination therapy(OR = 1.951; 95% CI 1.020~3.732), and nerve damage (OR = 3.013; 95% CI 1.278~7.101). Multivariable analysis showed that ICU stay >7 days (OR = 1.867; 95% CI 1.609~20.026), beta-lactamase inhibitor antibiotics (OR = 7.750; 95% CI 2.219~27.071), and carbapenem (OR = 9.143; 95% CI 2.259~37.01) are independent risk factors for VAP carbapenem caused by Carbapenem-resistant Enterobacteriaceae. A high resistance rate of CRE isolated from VAP indicated that the infected patients featured higher mortality and longer hospital stay time than the control group. Multiple risk factors for CRE infection and their control can effectively prevent the spread of VAP
Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma
Background: Accumulating evidences indicate that non-coding RNAs (ncRNAs) including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) acting as crucial regulators in osteosarcoma (OS). Previously, we reported that Rho associated coiled-coil containing protein kinase 1 (ROCK1), a metastatic-related gene was negatively regulated by microRNA-335-5p (miR-335-5p) and work as an oncogene in osteosarcoma. Whether any long non-coding RNAs participate in the upstream of miR-335-5p/ROCK1 axial remains unclear. Methods: Expression of differentiation antagonizing non-protein coding RNA (DANCR) and miR-335-5p/miR-1972 in osteosarcoma tissues were determined by a qRT-PCR assay and an ISH assay. Osteosarcoma cells' proliferation and migration/invasion ability changes were measured by a CCK-8/EDU assay and a transwell assay respectively. ROCK1 expression changes were checked by a qRT-PCR assay and a western blot assay. Targeted binding effects between miR-335-5p/miR-1972 and ROCK1 or DANCR were verified by a dual luciferase reporter assay and a RIP assay. In vivo experiments including a nude formation assay as well as a CT scan were applied to detect tumor growth and metastasis changes in animal level. Results: In the present study, an elevated DNACR was found in osteosarcoma tissue specimens and in osteosarcoma cell lines, and the elevated DNACR was closely correlated with poor prognosis in clinical patients. Functional experiments illustrated that a depression of DANCR suppressed ROCK1-mediated proliferation and metastasis in osteosarcoma cells. The results of western blot assays and qRT-PCR assays revealed that DANCR regulated ROCK1 via crosstalk with miR-335-5p and miR-1972. Further cellular behavioral experiments demonstrated that DNACR promoted ROCK1-meidated proliferation and metastasis through decoying both miR-335-5p and miR-1972. Finally, the outcomes of in vivo animal models showed that DANCR promoted tumor growth and lung metastasis of osteosarcoma. Conclusions: LncRNA DANCR work as an oncogene and promoted ROCK1-mediated proliferation and metastasis through acting as a competing endogenous RNA (ceRNA) in osteosarcoma
Two low-power optical data transmission ASICs for the ATLAS Liquid Argon Calorimeter readout upgrade
A serializer ASIC and a VCSEL driver ASIC are needed for the front-end
optical data transmission in the ATLAS liquid argon calorimeter readout phase-I
upgrade. The baseline ASICs are the serializer LOCx2 and the VCSEL driver
LOCld, designed in a 0.25-{\mu}m Silicon-on-Sapphire (SoS) CMOS technology and
consumed 843 mW and 320 mW, respectively. Based on a 130-nm CMOS technology, we
design two pin-to-pin-compatible backup ASICs, LOCx2-130 and LOCld-130. Their
power consumptions are much lower then of their counterparts, whereas other
performance, such as the latency, data rate, and radiation tolerance, meet the
phase-I upgrade requirements. We present the design of LOCx2-130 and LOCld-130.
The test results of LOCx2-130 are also presented.Comment: 12 pages, 12 figure
Optical Data Transmission ASICs for the High-Luminosity LHC (HL-LHC) Experiments
We present the design and test results of two optical data transmission ASICs
for the High-Luminosity LHC (HL-LHC) experiments. These ASICs include a
two-channel serializer (LOCs2) and a single-channel Vertical Cavity Surface
Emitting Laser (VCSEL) driver (LOCld1V2). Both ASICs are fabricated in a
commercial 0.25-um Silicon-on-Sapphire (SoS) CMOS technology and operate at a
data rate up to 8 Gbps per channel. The power consumption of LOCs2 and LOCld1V2
are 1.25 W and 0.27 W at 8-Gbps data rate, respectively. LOCld1V2 has been
verified meeting the radiation-tolerance requirements for HL-LHC experiments.Comment: 9 pages, 12 figure
CircRNA_0075723 protects against pneumonia-induced sepsis through inhibiting macrophage pyroptosis by sponging miR-155-5p and regulating SHIP1 expression
IntroductionCircular RNAs (circRNAs) have been linked to regulate macrophage polarization and subsequent inflammation in sepsis. However, the underlying mechanism and the function of circRNAs in macrophage pyroptosis in pneumonia-induced sepsis are still unknown.MethodsIn this study, we screened the differentially expressed circRNAs among the healthy individuals, pneumonia patients without sepsis and pneumonia-induced sepsis patients in the plasma by RNA sequencing (RNA-seq). Then we evaluated macrophage pyroptosis in sepsis patients and in vitro LPS/nigericin activated THP-1 cells. The lentiviral recombinant vector for circ_0075723 overexpression (OE-circ_0075723) and circ_0075723 silence (sh-circ_0075723) were constructed and transfected into THP-1 cells to explore the potential mechanism of circ_0075723 involved in LPS/nigericin induced macrophage pyroptosis.ResultsWe found circ_0075723, a novel circRNA that was significantly downregulated in pneumonia-induced sepsis patients compared to pneumonia patients without sepsis and healthy individuals. Meanwhile, pneumonia-induced sepsis patients exhibited activation of NLRP3 inflammasome and production of the pyroptosis-associated pro-inflammatory cytokines IL-1β and IL-18. circ_0075723 inhibited macrophage pyroptosis via sponging miR-155-5p which promoted SHIP1 expression directly. Besides, we found that circ_0075723 in macrophages promoted VE-cadherin expression in endothelial cells through inhibiting the release of NLRP3 inflammasome-related cytokines, IL-1β and IL-18, and protects endothelial cell integrity.DiscussionOur findings propose a unique approach wherein circ_0075723 suppresses macrophage pyroptosis and inflammation in pneumonia-induced sepsis via sponging with miR-155-5p and promoting SHIP1 expression. These findings indicate that circRNAs could be used as possible potential diagnostic and therapeutic targets for pneumonia-induced sepsis
- …