6,110 research outputs found

    Design of Gm-C wavelet filter for on-line epileptic EEG detection

    Get PDF
    Copyright © 2019 The Institute of Electronics, Information and Communication EngineersAnalog filter implementation of continuous wavelet transform is considered as a promising technique for on-line spike detection applied in wearable electroencephalogram system. This Letter proposes a novel method to construct analog wavelet base for analog wavelet filter design, in which the mathematical approximation model in frequency domain is built as an optimization problem and the genetic algorithm is used to find the global optimum resolution. Also, the Gm-C filter structure based on LC ladder simulation is employed to synthesize the obtained analog wavelet base. The Marr wavelet filter is designed as an example using SMIC 1V 0.35μm CMOS technology. Simulation results show that the proposed method can give a stable analog wavelet filter with higher approximation accuracy and excellent circuit performance, which is well suited for the design of low-frequency low-power spike detector.Peer reviewe

    DTER: Schedule Optimal RF Energy Request and Harvest for Internet of Things

    Full text link
    We propose a new energy harvesting strategy that uses a dedicated energy source (ES) to optimally replenish energy for radio frequency (RF) energy harvesting powered Internet of Things. Specifically, we develop a two-step dual tunnel energy requesting (DTER) strategy that minimizes the energy consumption on both the energy harvesting device and the ES. Besides the causality and capacity constraints that are investigated in the existing approaches, DTER also takes into account the overhead issue and the nonlinear charge characteristics of an energy storage component to make the proposed strategy practical. Both offline and online scenarios are considered in the second step of DTER. To solve the nonlinear optimization problem of the offline scenario, we convert the design of offline optimal energy requesting problem into a classic shortest path problem and thus a global optimal solution can be obtained through dynamic programming (DP) algorithms. The online suboptimal transmission strategy is developed as well. Simulation study verifies that the online strategy can achieve almost the same energy efficiency as the global optimal solution in the long term

    Realization of Analog Wavelet Filter using Hybrid Genetic Algorithm for On-line Epileptic Event Detection

    Get PDF
    © 2020 The Author(s). This open access work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/.As the evolution of traditional electroencephalogram (EEG) monitoring unit for epilepsy diagnosis, wearable ambulatory EEG (WAEEG) system transmits EEG data wirelessly, and can be made miniaturized, discrete and social acceptable. To prolong the battery lifetime, analog wavelet filter is used for epileptic event detection in WAEEG system to achieve on-line data reduction. For mapping continuous wavelet transform to analog filter implementation with low-power consumption and high approximation accuracy, this paper proposes a novel approximation method to construct the wavelet base in analog domain, in which the approximation process in frequency domain is considered as an optimization problem by building a mathematical model with only one term in the numerator. The hybrid genetic algorithm consisting of genetic algorithm and quasi-Newton method is employed to find the globally optimum solution, taking required stability into account. Experiment results show that the proposed method can give a stable analog wavelet base with simple structure and higher approximation accuracy compared with existing method, leading to a better spike detection accuracy. The fourth-order Marr wavelet filter is designed as an example using Gm-C filter structure based on LC ladder simulation, whose power consumption is only 33.4 pW at 2.1Hz. Simulation results show that the design method can be used to facilitate low power and small volume implementation of on-line epileptic event detector.Peer reviewe

    On a training-less solution for non-intrusive appliance load monitoring using graph signal processing

    Get PDF
    With ongoing large-scale smart energy metering deployments worldwide, disaggregation of a household’s total energy consumption down to individual appliances using analytical tools, aka. non-intrusive appliance load monitoring (NALM), has generated increased research interest lately. NALM can deepen energy feedback, support appliance retrofit advice and support home automation. However, despite the fact that NALM was proposed over 30 years ago, there are still many open challenges with respect to its practicality and effectiveness at low sampling rates. Indeed, the majority of NALM approaches, supervised or unsupervised, require training to build appliance models, and are sensitive to appliance changes in the house, thus requiring regular re-training. In this paper, we tackle this challenge by proposing a NALM approach that does not require any training. The main idea is to build upon the emerging field of graph signal processing to perform adaptive thresholding, signal clustering and pattern matching. We determine the performance limits of our approach and demonstrate its usefulness in practice. Using two open access datasets - the US REDD dataset with active power measurements downsampled to 1min resolution and the UK REFIT dataset with 8sec resolution, we demonstrate the effectiveness of the proposed method for typical smart meter sampling rate, with state-of-the-art supervised and unsupervised NALM approaches as benchmarks

    Electricity usage profile disaggregation of hourly smart meter data

    Get PDF
    This paper is motivated by the growing demand of disaggregating electricity consumption measured by smart meters, down to appliance level. The very low 15-min to 60- min granularity of energy measurements available for analysis, as is standard by the majority of nationwide smart metering programmes, is posing serious challenges. The non-intrusive load monitoring (NILM) solutions for these very low data rates cannot leverage on low (1-60sec) to high rates (in the order of kHz to MHz) NILM approaches, and so far have not received much attention in the literature. In this paper, we propose a novel electricity profile hourly disaggregation of energy consumed (kWh) based on K-nearest neighbours (K-NN), that relies on features such as statistical measures of the energy signal, time usage profile of appliances and reactive power consumption (if available). We propose relative standard deviation as a metric to assess the quality of each feature per appliance. For validation, three publicly accessible real-world datasets are used, namely the REDD, REFIT and AMPds (Version 2), for up to 3 months

    Blind non-intrusive appliance load monitoring using graph-based signal processing

    Get PDF
    With ongoing massive smart energy metering deployments, disaggregation of household's total energy consumption down to individual appliances using purely software tools, aka. non-intrusive appliance load monitoring (NALM), has generated increased interest. However, despite the fact that NALM was proposed over 30 years ago, there are still many open challenges. Indeed, the majority of approaches require training and are sensitive to appliance changes requiring regular re-training. In this paper, we tackle this challenge by proposing a "blind" NALM approach that does not require any training. The main idea is to build upon an emerging field of graph-based signal processing to perform adaptive thresholding, signal clustering and feature matching. Using two datasets of active power measurements with 1min and 8sec resolution, we demonstrate the effectiveness of the proposed method using a state-of-the-art NALM approaches as benchmarks
    corecore