50 research outputs found

    Universal Adaptive Data Augmentation

    Full text link
    Existing automatic data augmentation (DA) methods either ignore updating DA's parameters according to the target model's state during training or adopt update strategies that are not effective enough. In this work, we design a novel data augmentation strategy called "Universal Adaptive Data Augmentation" (UADA). Different from existing methods, UADA would adaptively update DA's parameters according to the target model's gradient information during training: given a pre-defined set of DA operations, we randomly decide types and magnitudes of DA operations for every data batch during training, and adaptively update DA's parameters along the gradient direction of the loss concerning DA's parameters. In this way, UADA can increase the training loss of the target networks, and the target networks would learn features from harder samples to improve the generalization. Moreover, UADA is very general and can be utilized in numerous tasks, e.g., image classification, semantic segmentation and object detection. Extensive experiments with various models are conducted on CIFAR-10, CIFAR-100, ImageNet, tiny-ImageNet, Cityscapes, and VOC07+12 to prove the significant performance improvements brought by our proposed adaptive augmentation.Comment: under submissio

    Self-supervised Learning for Enhancing Geometrical Modeling in 3D-Aware Generative Adversarial Network

    Full text link
    3D-aware Generative Adversarial Networks (3D-GANs) currently exhibit artifacts in their 3D geometrical modeling, such as mesh imperfections and holes. These shortcomings are primarily attributed to the limited availability of annotated 3D data, leading to a constrained "valid latent area" for satisfactory modeling. To address this, we present a Self-Supervised Learning (SSL) technique tailored as an auxiliary loss for any 3D-GAN, designed to improve its 3D geometrical modeling capabilities. Our approach pioneers an inversion technique for 3D-GANs, integrating an encoder that performs adaptive spatially-varying range operations. Utilizing this inversion, we introduce the Cyclic Generative Constraint (CGC), aiming to densify the valid latent space. The CGC operates via augmented local latent vectors that maintain the same geometric form, and it imposes constraints on the cycle path outputs, specifically the generator-encoder-generator sequence. This SSL methodology seamlessly integrates with the inherent GAN loss, ensuring the integrity of pre-existing 3D-GAN architectures without necessitating alterations. We validate our approach with comprehensive experiments across various datasets and architectures, underscoring its efficacy. Our project website: https://3dgan-ssl.github.ioComment: 13 pages, 12 figures, 6 table

    General Adversarial Defense Against Black-box Attacks via Pixel Level and Feature Level Distribution Alignments

    Full text link
    Deep Neural Networks (DNNs) are vulnerable to the black-box adversarial attack that is highly transferable. This threat comes from the distribution gap between adversarial and clean samples in feature space of the target DNNs. In this paper, we use Deep Generative Networks (DGNs) with a novel training mechanism to eliminate the distribution gap. The trained DGNs align the distribution of adversarial samples with clean ones for the target DNNs by translating pixel values. Different from previous work, we propose a more effective pixel level training constraint to make this achievable, thus enhancing robustness on adversarial samples. Further, a class-aware feature-level constraint is formulated for integrated distribution alignment. Our approach is general and applicable to multiple tasks, including image classification, semantic segmentation, and object detection. We conduct extensive experiments on different datasets. Our strategy demonstrates its unique effectiveness and generality against black-box attacks

    InsightMapper: A Closer Look at Inner-instance Information for Vectorized High-Definition Mapping

    Full text link
    Vectorized high-definition (HD) maps contain detailed information about surrounding road elements, which are crucial for various downstream tasks in modern autonomous driving vehicles, such as vehicle planning and control. Recent works have attempted to directly detect the vectorized HD map as a point set prediction task, resulting in significant improvements in detection performance. However, these approaches fail to analyze and exploit the inner-instance correlations between predicted points, impeding further advancements. To address these challenges, we investigate the utilization of inner-INS\textbf{INS}tance information for vectorized hIGH\textbf{IGH}-definition mapping through T\textbf{T}ransformers and introduce InsightMapper. This paper presents three novel designs within InsightMapper that leverage inner-instance information in distinct ways, including hybrid query generation, inner-instance query fusion, and inner-instance feature aggregation. Comparative experiments are conducted on the NuScenes dataset, showcasing the superiority of our proposed method. InsightMapper surpasses previous state-of-the-art (SOTA) methods by 5.78 mAP and 5.12 TOPO, which assess topology correctness. Simultaneously, InsightMapper maintains high efficiency during both training and inference phases, resulting in remarkable comprehensive performance. The project page for this work is available at https://tonyxuqaq.github.io/projects/InsightMapper .Comment: Code and demo will be available at https://tonyxuqaq.github.io/projects/InsightMappe

    Influencer Backdoor Attack on Semantic Segmentation

    Full text link
    When a small number of poisoned samples are injected into the training dataset of a deep neural network, the network can be induced to exhibit malicious behavior during inferences, which poses potential threats to real-world applications. While they have been intensively studied in classification, backdoor attacks on semantic segmentation have been largely overlooked. Unlike classification, semantic segmentation aims to classify every pixel within a given image. In this work, we explore backdoor attacks on segmentation models to misclassify all pixels of a victim class by injecting a specific trigger on non-victim pixels during inferences, which is dubbed Influencer Backdoor Attack (IBA). IBA is expected to maintain the classification accuracy of non-victim pixels and misleads classifications of all victim pixels in every single inference. Specifically, we consider two types of IBA scenarios, i.e., 1) Free-position IBA: the trigger can be positioned freely except for pixels of the victim class, and 2) Long-distance IBA: the trigger can only be positioned somewhere far from victim pixels, given the possible practical constraint. Based on the context aggregation ability of segmentation models, we propose techniques to improve IBA for the scenarios. Concretely, for free-position IBA, we propose a simple, yet effective Nearest Neighbor trigger injection strategy for poisoned sample creation. For long-distance IBA, we propose a novel Pixel Random Labeling strategy. Our extensive experiments reveal that current segmentation models do suffer from backdoor attacks, and verify that our proposed techniques can further increase attack performance

    Memory Consistency Guided Divide-and-Conquer Learning for Generalized Category Discovery

    Full text link
    Generalized category discovery (GCD) aims at addressing a more realistic and challenging setting of semi-supervised learning, where only part of the category labels are assigned to certain training samples. Previous methods generally employ naive contrastive learning or unsupervised clustering scheme for all the samples. Nevertheless, they usually ignore the inherent critical information within the historical predictions of the model being trained. Specifically, we empirically reveal that a significant number of salient unlabeled samples yield consistent historical predictions corresponding to their ground truth category. From this observation, we propose a Memory Consistency guided Divide-and-conquer Learning framework (MCDL). In this framework, we introduce two memory banks to record historical prediction of unlabeled data, which are exploited to measure the credibility of each sample in terms of its prediction consistency. With the guidance of credibility, we can design a divide-and-conquer learning strategy to fully utilize the discriminative information of unlabeled data while alleviating the negative influence of noisy labels. Extensive experimental results on multiple benchmarks demonstrate the generality and superiority of our method, where our method outperforms state-of-the-art models by a large margin on both seen and unseen classes of the generic image recognition and challenging semantic shift settings (i.e.,with +8.4% gain on CUB and +8.1% on Standford Cars)

    Shrinking Class Space for Enhanced Certainty in Semi-Supervised Learning

    Full text link
    Semi-supervised learning is attracting blooming attention, due to its success in combining unlabeled data. To mitigate potentially incorrect pseudo labels, recent frameworks mostly set a fixed confidence threshold to discard uncertain samples. This practice ensures high-quality pseudo labels, but incurs a relatively low utilization of the whole unlabeled set. In this work, our key insight is that these uncertain samples can be turned into certain ones, as long as the confusion classes for the top-1 class are detected and removed. Invoked by this, we propose a novel method dubbed ShrinkMatch to learn uncertain samples. For each uncertain sample, it adaptively seeks a shrunk class space, which merely contains the original top-1 class, as well as remaining less likely classes. Since the confusion ones are removed in this space, the re-calculated top-1 confidence can satisfy the pre-defined threshold. We then impose a consistency regularization between a pair of strongly and weakly augmented samples in the shrunk space to strive for discriminative representations. Furthermore, considering the varied reliability among uncertain samples and the gradually improved model during training, we correspondingly design two reweighting principles for our uncertain loss. Our method exhibits impressive performance on widely adopted benchmarks. Code is available at https://github.com/LiheYoung/ShrinkMatch.Comment: Accepted by ICCV 202
    corecore