51 research outputs found
Memristive Non-Volatile Memory Based on Graphene Materials
Resistive random access memory (RRAM), which is considered as one of the most promising next-generation non-volatile memory (NVM) devices and a representative of memristor technologies, demonstrated great potential in acting as an artificial synapse in the industry of neuromorphic systems and artificial intelligence (AI), due its advantages such as fast operation speed, low power consumption, and high device density. Graphene and related materials (GRMs), especially graphene oxide (GO), acting as active materials for RRAM devices, are considered as a promising alternative to other materials including metal oxides and perovskite materials. Herein, an overview of GRM-based RRAM devices is provided, with discussion about the properties of GRMs, main operation mechanisms for resistive switching (RS) behavior, figure of merit (FoM) summary, and prospect extension of GRM-based RRAM devices. With excellent physical and chemical advantages like intrinsic Young’s modulus (1.0 TPa), good tensile strength (130 GPa), excellent carrier mobility (2.0 × 105 cm2∙V−1∙s−1), and high thermal (5000 Wm−1∙K−1) and superior electrical conductivity (1.0 × 106 S∙m−1), GRMs can act as electrodes and resistive switching media in RRAM devices. In addition, the GRM-based interface between electrode and dielectric can have an effect on atomic diffusion limitation in dielectric and surface effect suppression. Immense amounts of concrete research indicate that GRMs might play a significant role in promoting the large-scale commercialization possibility of RRAM devices
Effect of Asymmetric Anchoring Groups on Electronic Transport in Hybrid Metal/Molecule/Graphene Single Molecule Junctions.
A combined experimental and theoretical study on molecular junctions with asymmetry in both the electrode type and in the anchoring group type is presented. A scanning tunnelling microscope is used to create the "asymmetric" Au-S-(CH2 )n-COOH-graphene molecular junctions and determine their conductance. The measurements are combined with electron transport calculations based on density functional theory (DFT) to analyze the electrical conductance and its length attenuation factor from a series of junctions of different molecular length (n). These results show an unexpected trend with a rather high conductance and a smaller attenuation factor for the Au-S-(CH2 )n -COOH-graphene configuration compared to the equivalent junction with the "symmetrical" COOH contacting using the HOOC-(CH2 )n -COOH series. Owing to the effect of the graphene electrode, the attenuation factor is also smaller than the one obtained for Au/Au electrodes. These results are interpreted through the relative molecule/electrode couplings and molecular level alignments as determined with DFT calculations. In an asymmetric junction, the electrical current flows through the less resistive conductance channel, similarly to what is observed in the macroscopic regime
A Ti3C2Tx-Based Composite as Separator Coating for Stable Li-S Batteries
The nitrogen-doped MXene carbon nanosheet-nickel (N-M@CNi) powder was successfully prepared by a combined process of electrostatic attraction and annealing strategy, and then applied as the separator coating in lithium-sulfur batteries. The morphology and structure of the N-M@CNi were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectrum, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption method. The strong LiPS adsorption ability and high conductivity are associated with the N-doped carbon nanosheet-Ni modified surface. The modified separator offers the cathode of Li-S cell with greater sulfur utilization, better high-rate adaptability, and more stable cycling performance compared with the pristine separator. At 0.2 C the cell with N-M@CNi separator delivers an initial capacity of 1309 mAh g-1. More importantly, the N-M@CNi separator is able to handle a cathode with 3.18 mg cm-2 sulfur loading, delivering a capacity decay rate of 0.043% with a high capacity retention of 95.8%. Therefore, this work may provide a feasible approach to separator modification materials towards improved Li-S cells with improved stability
Graphene as a Promising Electrode for Low-Current Attenuation in Nonsymmetric Molecular Junctions
International audienceWe have measured the single-molecule conductance of 1,-alkanedithiol molecular bridges ( = 4, 6, 8, 10, 12) on a graphene substrate using scanning tunneling microscopy (STM)-formed electrical junctions. The conductance values of this homologous series ranged from 2.3 nS (= 12) to 53 nS (= 4), with a decay constant β of 0.40 per methylene (−CH) group. This result is explained by a combination of density functional theory (DFT) and Keldysh− Green function calculations. The obtained decay, which is much lower than the one obtained for symmetric gold junctions, is related to the weak coupling at the molecule−graphene interface and the electronic structure of graphene. As a consequence, we show that using graphene nonsymmetric junctions and appropriate anchoring groups may lead to a much-lower decay constant and more-conductive molecular junctions at longer lengths
Effect of Annealing Temperature for Ni/AlOx/Pt RRAM Devices Fabricated with Solution-Based Dielectric
Resistive random access memory (RRAM) devices with Ni/AlOx/Pt-structure were manufactured by deposition of a solution-based aluminum oxide (AlOx) dielectric layer which was subsequently annealed at temperatures from 200 °C to 300 °C, in increments of 25 °C. The devices displayed typical bipolar resistive switching characteristics. Investigations were carried out on the effect of different annealing temperatures for associated RRAM devices to show that performance was correlated with changes of hydroxyl group concentration in the AlOx thin films. The annealing temperature of 250 °C was found to be optimal for the dielectric layer, exhibiting superior performance of the RRAM devices with the lowest operation voltage (104), the narrowest resistance distribution, the longest retention time (>104 s) and the most endurance cycles (>150)
- …