215 research outputs found
Semisupervised Autoencoder for Sentiment Analysis
In this paper, we investigate the usage of autoencoders in modeling textual
data. Traditional autoencoders suffer from at least two aspects: scalability
with the high dimensionality of vocabulary size and dealing with
task-irrelevant words. We address this problem by introducing supervision via
the loss function of autoencoders. In particular, we first train a linear
classifier on the labeled data, then define a loss for the autoencoder with the
weights learned from the linear classifier. To reduce the bias brought by one
single classifier, we define a posterior probability distribution on the
weights of the classifier, and derive the marginalized loss of the autoencoder
with Laplace approximation. We show that our choice of loss function can be
rationalized from the perspective of Bregman Divergence, which justifies the
soundness of our model. We evaluate the effectiveness of our model on six
sentiment analysis datasets, and show that our model significantly outperforms
all the competing methods with respect to classification accuracy. We also show
that our model is able to take advantage of unlabeled dataset and get improved
performance. We further show that our model successfully learns highly
discriminative feature maps, which explains its superior performance.Comment: To appear in AAAI 201
Text Coherence Analysis Based on Deep Neural Network
In this paper, we propose a novel deep coherence model (DCM) using a
convolutional neural network architecture to capture the text coherence. The
text coherence problem is investigated with a new perspective of learning
sentence distributional representation and text coherence modeling
simultaneously. In particular, the model captures the interactions between
sentences by computing the similarities of their distributional
representations. Further, it can be easily trained in an end-to-end fashion.
The proposed model is evaluated on a standard Sentence Ordering task. The
experimental results demonstrate its effectiveness and promise in coherence
assessment showing a significant improvement over the state-of-the-art by a
wide margin.Comment: 4 pages, 2 figures, CIKM 201
- …