208 research outputs found
Indole contributes to tetracycline resistance via the outer membrane protein OmpN in Vibrio splendidus
As an interspecies and interkingdom signaling molecule, indole has recently received attention for its diverse effects on the physiology of both bacteria and hosts. In this study, indole increased the tetracycline resistance of Vibrio splendidus. The minimal inhibitory concentration of tetracycline was 10 mu g/mL, and the OD600 of V. splendidus decreased by 94.5% in the presence of 20 mu g/mL tetracycline; however, the OD600 of V. splendidus with a mixture of 20 mu g/mL tetracycline and 125 mu M indole was 10- or 4.5-fold higher than that with only 20 mu g/mL tetracycline at different time points. The percentage of cells resistant to 10 mu g/mL tetracycline was 600-fold higher in the culture with an OD600 of approximately 2.0 (higher level of indole) than that in the culture with an OD600 of 0.5, which also meant that the level of indole was correlated to the tetracycline resistance of V. splendidus. Furthermore, one differentially expressed protein, which was identified as the outer membrane porin OmpN using SDS-PAGE combined with MALDI-TOF/TOF MS, was upregulated. Consequently, the expression of the ompN gene in the presence of either tetracycline or indole and simultaneously in the presence of indole and tetracycline was upregulated by 1.8-, 2.54-, and 6.01-fold, respectively, compared to the control samples. The combined results demonstrated that indole enhanced the tetracycline resistance of V. splendidus, and this resistance was probably due to upregulation of the outer membrane porin OmpN
Link Prediction on Heterophilic Graphs via Disentangled Representation Learning
Link prediction is an important task that has wide applications in various
domains. However, the majority of existing link prediction approaches assume
the given graph follows homophily assumption, and designs similarity-based
heuristics or representation learning approaches to predict links. However,
many real-world graphs are heterophilic graphs, where the homophily assumption
does not hold, which challenges existing link prediction methods. Generally, in
heterophilic graphs, there are many latent factors causing the link formation,
and two linked nodes tend to be similar in one or two factors but might be
dissimilar in other factors, leading to low overall similarity. Thus, one way
is to learn disentangled representation for each node with each vector
capturing the latent representation of a node on one factor, which paves a way
to model the link formation in heterophilic graphs, resulting in better node
representation learning and link prediction performance. However, the work on
this is rather limited. Therefore, in this paper, we study a novel problem of
exploring disentangled representation learning for link prediction on
heterophilic graphs. We propose a novel framework DisenLink which can learn
disentangled representations by modeling the link formation and perform
factor-aware message-passing to facilitate link prediction. Extensive
experiments on 13 real-world datasets demonstrate the effectiveness of
DisenLink for link prediction on both heterophilic and hemophiliac graphs. Our
codes are available at https://github.com/sjz5202/DisenLin
Rethinking the Reference-based Distinctive Image Captioning
Distinctive Image Captioning (DIC) -- generating distinctive captions that
describe the unique details of a target image -- has received considerable
attention over the last few years. A recent DIC work proposes to generate
distinctive captions by comparing the target image with a set of
semantic-similar reference images, i.e., reference-based DIC (Ref-DIC). It aims
to make the generated captions can tell apart the target and reference images.
Unfortunately, reference images used by existing Ref-DIC works are easy to
distinguish: these reference images only resemble the target image at
scene-level and have few common objects, such that a Ref-DIC model can
trivially generate distinctive captions even without considering the reference
images. To ensure Ref-DIC models really perceive the unique objects (or
attributes) in target images, we first propose two new Ref-DIC benchmarks.
Specifically, we design a two-stage matching mechanism, which strictly controls
the similarity between the target and reference images at object-/attribute-
level (vs. scene-level). Secondly, to generate distinctive captions, we develop
a strong Transformer-based Ref-DIC baseline, dubbed as TransDIC. It not only
extracts visual features from the target image, but also encodes the
differences between objects in the target and reference images. Finally, for
more trustworthy benchmarking, we propose a new evaluation metric named
DisCIDEr for Ref-DIC, which evaluates both the accuracy and distinctiveness of
the generated captions. Experimental results demonstrate that our TransDIC can
generate distinctive captions. Besides, it outperforms several state-of-the-art
models on the two new benchmarks over different metrics.Comment: ACM MM 202
China is on the track tackling Enteromorpha spp forming green tide
Green tide management is supposed to be a long term fight rather than an episode during the 29th Olympic Games for China, since it has been gaining in scale and frequency during the past 3 decades in both marine and estuary environment all over the world. A number of rapid-responding studies including oceanographic comprehensive surveys along the coastline have been conducted during the bloom and post-bloom periods in 2008 by Chinese marine scientists. The preliminary results are as below: (1) phylogenetic analysis indicates that the bloom forming alga forms a clade with representatives of the green seaweed Enteromorpha linza, though, the alga has been identified as E. proliera by means of morphological; (2) the present data suggest that the bloom was originated from south of Yellow Sea, but not the severely affected area near Qingdao City; (3) pathways of reproduction for E. prolifera have approved to be multifarious, including sexual, asexual and vegetative propagation; (4) somatic cells may act as a propagule bank, which is supposed to be a very dangerous transmitting way for its marked movability, adaptability and viability; (5) pyrolysis of the alga showed that three stages appeared during the process, which are dehydration (18–20^o^C), main devolatilization (200–450^o^C) and residual decomposition (450–750^o^C), and activation energy of the alga was determined at 237.23 KJ•mol^-1^. Although the scarce knowlegde on E. prolifera not yet allow a fully understanding of the green tide, some of the results suggests possible directions in further green tide research and management
Rethinking Multi-Modal Alignment in Video Question Answering from Feature and Sample Perspectives
Reasoning about causal and temporal event relations in videos is a new
destination of Video Question Answering (VideoQA).The major stumbling block to
achieve this purpose is the semantic gap between language and video since they
are at different levels of abstraction. Existing efforts mainly focus on
designing sophisticated architectures while utilizing frame- or object-level
visual representations. In this paper, we reconsider the multi-modal alignment
problem in VideoQA from feature and sample perspectives to achieve better
performance. From the view of feature,we break down the video into trajectories
and first leverage trajectory feature in VideoQA to enhance the alignment
between two modalities. Moreover, we adopt a heterogeneous graph architecture
and design a hierarchical framework to align both trajectory-level and
frame-level visual feature with language feature. In addition, we found that
VideoQA models are largely dependent on language priors and always neglect
visual-language interactions. Thus, two effective yet portable training
augmentation strategies are designed to strengthen the cross-modal
correspondence ability of our model from the view of sample. Extensive results
show that our method outperforms all the state-of-the-art models on the
challenging NExT-QA benchmark, which demonstrates the effectiveness of the
proposed method
MTA3-SOX2 Module Regulates Cancer Stemness and Contributes to Clinical Outcomes of Tongue Carcinoma.
Cancer cell plasticity plays critical roles in both tumorigenesis and tumor progression. Metastasis-associated protein 3 (MTA3), a component of the nucleosome remodeling and histone deacetylase (NuRD) complex and multi-effect coregulator, can serve as a tumor suppressor in many cancer types. However, the role of MTA3 in tongue squamous cell cancer (TSCC) remains unclear although it is the most prevalent head and neck cancer and often with poor prognosis. By analyzing both published datasets and clinical specimens, we found that the level of MTA3 was lower in TSCC compared to normal tongue tissues. Data from gene set enrichment analysis (GSEA) also indicated that MTA3 was inversely correlated with cancer stemness. In addition, the levels of MTA3 in both samples from TSCC patients and TSCC cell lines were negatively correlated with SOX2, a key regulator of the plasticity of cancer stem cells (CSCs). We also found that SOX2 played an indispensable role in MTA3-mediated CSC repression. Using the mouse model mimicking human TSCC we demonstrated that the levels of MTA3 and SOX2 decreased and increased, respectively, during the process of tumorigenesis and progression. Finally, we showed that the patients in the MTA
Text-to-Song: Towards Controllable Music Generation Incorporating Vocals and Accompaniment
A song is a combination of singing voice and accompaniment. However, existing
works focus on singing voice synthesis and music generation independently.
Little attention was paid to explore song synthesis. In this work, we propose a
novel task called text-to-song synthesis which incorporating both vocals and
accompaniments generation. We develop Melodist, a two-stage text-to-song method
that consists of singing voice synthesis (SVS) and vocal-to-accompaniment (V2A)
synthesis. Melodist leverages tri-tower contrastive pretraining to learn more
effective text representation for controllable V2A synthesis. A Chinese song
dataset mined from a music website is built up to alleviate data scarcity for
our research. The evaluation results on our dataset demonstrate that Melodist
can synthesize songs with comparable quality and style consistency. Audio
samples can be found in https://text2songMelodist.github.io/Sample/.Comment: ACL 2024 Mai
MTA3-SOX2 Module Regulates Cancer Stemness and Contributes to Clinical Outcomes of Tongue Carcinoma
Cancer cell plasticity plays critical roles in both tumorigenesis and tumor progression. Metastasis-associated protein 3 (MTA3), a component of the nucleosome remodeling and histone deacetylase (NuRD) complex and multi-effect coregulator, can serve as a tumor suppressor in many cancer types. However, the role of MTA3 in tongue squamous cell cancer (TSCC) remains unclear although it is the most prevalent head and neck cancer and often with poor prognosis. By analyzing both published datasets and clinical specimens, we found that the level of MTA3 was lower in TSCC compared to normal tongue tissues. Data from gene set enrichment analysis (GSEA) also indicated that MTA3 was inversely correlated with cancer stemness. In addition, the levels of MTA3 in both samples from TSCC patients and TSCC cell lines were negatively correlated with SOX2, a key regulator of the plasticity of cancer stem cells (CSCs). We also found that SOX2 played an indispensable role in MTA3-mediated CSC repression. Using the mouse model mimicking human TSCC we demonstrated that the levels of MTA3 and SOX2 decreased and increased, respectively, during the process of tumorigenesis and progression. Finally, we showed that the patients in the MTA
- …