6,098 research outputs found

    Duistermaat-Heckman measure and the mixture of quantum states

    Full text link
    In this paper, we present a general framework to solve a fundamental problem in Random Matrix Theory (RMT), i.e., the problem of describing the joint distribution of eigenvalues of the sum \bsA+\bsB of two independent random Hermitian matrices \bsA and \bsB. Some considerations about the mixture of quantum states are basically subsumed into the above mathematical problem. Instead, we focus on deriving the spectral density of the mixture of adjoint orbits of quantum states in terms of Duistermaat-Heckman measure, originated from the theory of symplectic geometry. Based on this method, we can obtain the spectral density of the mixture of independent random states. In particular, we obtain explicit formulas for the mixture of random qubits. We also find that, in the two-level quantum system, the average entropy of the equiprobable mixture of nn random density matrices chosen from a random state ensemble (specified in the text) increases with the number nn. Hence, as a physical application, our results quantitatively explain that the quantum coherence of the mixture monotonously decreases statistically as the number of components nn in the mixture. Besides, our method may be used to investigate some statistical properties of a special subclass of unital qubit channels.Comment: 40 pages, 10 figures, LaTeX, the final version accepted for publication in J. Phys.

    Direct Acyclic Graph based Ledger for Internet of Things: Performance and Security Analysis

    Get PDF
    Direct Acyclic Graph (DAG)-based ledger and the corresponding consensus algorithm has been identified as a promising technology for Internet of Things (IoT). Compared with Proof-of-Work (PoW) and Proof-of-Stake (PoS) that have been widely used in blockchain, the consensus mechanism designed on DAG structure (simply called as DAG consensus) can overcome some shortcomings such as high resource consumption, high transaction fee, low transaction throughput and long confirmation delay. However, the theoretic analysis on the DAG consensus is an untapped venue to be explored. To this end, based on one of the most typical DAG consensuses, Tangle, we investigate the impact of network load on the performance and security of the DAG-based ledger. Considering unsteady network load, we first propose a Markov chain model to capture the behavior of DAG consensus process under dynamic load conditions. The key performance metrics, i.e., cumulative weight and confirmation delay are analysed based on the proposed model. Then, we leverage a stochastic model to analyse the probability of a successful double-spending attack in different network load regimes. The results can provide an insightful understanding of DAG consensus process, e.g., how the network load affects the confirmation delay and the probability of a successful attack. Meanwhile, we also demonstrate the trade-off between security level and confirmation delay, which can act as a guidance for practical deployment of DAG-based ledgers.Comment: accepted by IEEE Transactions on Networkin
    • …
    corecore