273,942 research outputs found
Exploiting Causal Independence in Bayesian Network Inference
A new method is proposed for exploiting causal independencies in exact
Bayesian network inference. A Bayesian network can be viewed as representing a
factorization of a joint probability into the multiplication of a set of
conditional probabilities. We present a notion of causal independence that
enables one to further factorize the conditional probabilities into a
combination of even smaller factors and consequently obtain a finer-grain
factorization of the joint probability. The new formulation of causal
independence lets us specify the conditional probability of a variable given
its parents in terms of an associative and commutative operator, such as
``or'', ``sum'' or ``max'', on the contribution of each parent. We start with a
simple algorithm VE for Bayesian network inference that, given evidence and a
query variable, uses the factorization to find the posterior distribution of
the query. We show how this algorithm can be extended to exploit causal
independence. Empirical studies, based on the CPCS networks for medical
diagnosis, show that this method is more efficient than previous methods and
allows for inference in larger networks than previous algorithms.Comment: See http://www.jair.org/ for any accompanying file
Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios
In the widely-studied two-color laser scheme for terahertz (THz) radiation
from a gas, the frequency ratio of the two lasers is usually fixed at
1:2. We investigate THz generation with uncommon frequency
ratios. Our experiments show, for the first time, efficient THz generation with
new ratios of 1:4 and 2:3. We observe that the THz
polarization can be adjusted by rotating the longer-wavelength laser
polarization and the polarization adjustment becomes inefficient by rotating
the other laser polarization; the THz energy shows similar scaling laws with
different frequency ratios. These observations are inconsistent with multi-wave
mixing theory, but support the gas-ionization model. This study pushes the
development of the two-color scheme and provides a new dimension to explore the
long-standing problem of the THz generation mechanism.Comment: 6 pages, 3 figure
Human gait recognition with matrix representation
Human gait is an important biometric feature. It can be perceived from a great distance and has recently attracted greater attention in video-surveillance-related applications, such as closed-circuit television. We explore gait recognition based on a matrix representation in this paper. First, binary silhouettes over one gait cycle are averaged. As a result, each gait video sequence, containing a number of gait cycles, is represented by a series of gray-level averaged images. Then, a matrix-based unsupervised algorithm, namely coupled subspace analysis (CSA), is employed as a preprocessing step to remove noise and retain the most representative information. Finally, a supervised algorithm, namely discriminant analysis with tensor representation, is applied to further improve classification ability. This matrix-based scheme demonstrates a much better gait recognition performance than state-of-the-art algorithms on the standard USF HumanID Gait database
Graphical description of local Gaussian operations for continuous-variable weighted graph states
The form of a local Clifford (LC, also called local Gaussian (LG)) operation
for the continuous-variable (CV) weighted graph states is presented in this
paper, which is the counterpart of the LC operation of local complementation
for qubit graph states. The novel property of the CV weighted graph states is
shown, which can be expressed by the stabilizer formalism. It is distinctively
different from the qubit weighted graph states, which can not be expressed by
the stabilizer formalism. The corresponding graph rule, stated in purely graph
theoretical terms, is described, which completely characterizes the evolution
of CV weighted graph states under this LC operation. This LC operation may be
applied repeatedly on a CV weighted graph state, which can generate the
infinite LC equivalent graph states of this graph state. This work is an
important step to characterize the LC equivalence class of CV weighted graph
states.Comment: 5 pages, 6 figure
Scaling in the time-dependent failure of a fiber bundle with local load sharing
We study the scaling behaviors of a time-dependent fiber-bundle model with
local load sharing. Upon approaching the complete failure of the bundle, the
breaking rate of fibers diverges according to ,
where is the lifetime of the bundle, and is a quite
universal scaling exponent. The average lifetime of the bundle scales
with the system size as , where depends on the
distribution of individual fiber as well as the breakdown rule.Comment: 5 pages, 4 eps figures; to appear in Phys. Rev.
Recommended from our members
The application of Han Dynasty cultural elements to modern product design
Chinese Han Culture, as Chinese nation's "core culture", is the cultural symbol of Chinese nation, and played an important role in the history of Chinese cultural development, even in the history of world cultural development. Designing in the Han Dynasty, while inheriting Chinese traditional culture, but also having its unique style, are appreciated and respected by the people nowadays. In a modern society where the design is becoming more diversified, the innovative design based on traditional culture and art has its unique charm and vitality. This paper presented our recent research on the application of Han Dynasty cultural elements to modern product design, reflected the local design connotation of Han Dynasty cultural elements
Single-particle subband structure of Quantum Cables
We proposed a model of Quantum Cable in analogy to the recently synthesized
coaxial nanocable structure [Suenaga et al. Science, 278, 653 (1997); Zhang et
al. ibid, 281, 973 (1998)], and studied its single-electron subband structure.
Our results show that the subband spectrum of Quantum Cable is different from
either double-quantum-wire (DQW) structure in two-dimensional electron gas
(2DEG) or single quantum cylinder. Besides the double degeneracy of subbands
arisen from the non-abelian mirrow reflection symmetry, interesting
quasicrossings (accidental degeneracies), anticrossings and bundlings of
Quantum Cable energy subbands are observed for some structure parameters. In
the extreme limit (barrier width tends to infinity), the normal degeneracy of
subbands different from the DQW structure is independent on the other structure
parameters.Comment: 12 pages, 9 figure
- …