156,225 research outputs found

    Influence of Magnetic Field Decay on Electron Capture in Magnetars

    Full text link
    The de-excited energy of electron capture (EC) induced by magnetic field decay may be a new source for heating magnetar crust, so we do a quantitative calculation on the EC process near the outer crust and analyze their influence on persistent X-ray radiation of magnetars, adopting the experimental data or the results of theoretical model (including the large-scale shell model and quasi-particle random phase approximation).Comment: 3 pages; To be published in the special issue for Variability of Blazars: From Jansky to Fermi(VBJF) in Journal of Astronomy and Astrophysic

    Average-case Approximation Ratio of Scheduling without Payments

    Full text link
    Apart from the principles and methodologies inherited from Economics and Game Theory, the studies in Algorithmic Mechanism Design typically employ the worst-case analysis and approximation schemes of Theoretical Computer Science. For instance, the approximation ratio, which is the canonical measure of evaluating how well an incentive-compatible mechanism approximately optimizes the objective, is defined in the worst-case sense. It compares the performance of the optimal mechanism against the performance of a truthful mechanism, for all possible inputs. In this paper, we take the average-case analysis approach, and tackle one of the primary motivating problems in Algorithmic Mechanism Design -- the scheduling problem [Nisan and Ronen 1999]. One version of this problem which includes a verification component is studied by [Koutsoupias 2014]. It was shown that the problem has a tight approximation ratio bound of (n+1)/2 for the single-task setting, where n is the number of machines. We show, however, when the costs of the machines to executing the task follow any independent and identical distribution, the average-case approximation ratio of the mechanism given in [Koutsoupias 2014] is upper bounded by a constant. This positive result asymptotically separates the average-case ratio from the worst-case ratio, and indicates that the optimal mechanism for the problem actually works well on average, although in the worst-case the expected cost of the mechanism is Theta(n) times that of the optimal cost

    Laplacian coefficients of unicyclic graphs with the number of leaves and girth

    Full text link
    Let GG be a graph of order nn and let L(G,λ)=∑k=0n(−1)kck(G)λn−k\mathcal{L}(G,\lambda)=\sum_{k=0}^n (-1)^{k}c_{k}(G)\lambda^{n-k} be the characteristic polynomial of its Laplacian matrix. Motivated by Ili\'{c} and Ili\'{c}'s conjecture [A. Ili\'{c}, M. Ili\'{c}, Laplacian coefficients of trees with given number of leaves or vertices of degree two, Linear Algebra and its Applications 431(2009)2195-2202.] on all extremal graphs which minimize all the Laplacian coefficients in the set Un,l\mathcal{U}_{n,l} of all nn-vertex unicyclic graphs with the number of leaves ll, we investigate properties of the minimal elements in the partial set (Un,lg,âȘŻ)(\mathcal{U}_{n,l}^g, \preceq) of the Laplacian coefficients, where Un,lg\mathcal{U}_{n,l}^g denote the set of nn-vertex unicyclic graphs with the number of leaves ll and girth gg. These results are used to disprove their conjecture. Moreover, the graphs with minimum Laplacian-like energy in Un,lg\mathcal{U}_{n,l}^g are also studied.Comment: 19 page, 4figure

    Effective potential calculation of the MSSM lightest CP-even Higgs boson mass

    Get PDF
    I summarize results of two-loop effective potential calculations of the lightest CP-even Higgs boson mass in the minimal supersymmetric standard model.Comment: 4 pages, 1 figur

    MODELLING REPEAT VISITATION

    Get PDF
    • 

    corecore