865 research outputs found

    Separation of Different Contributions to the Total X-ray Luminosity in Gamma-ray Loud Blazars

    Get PDF
    The relativistic beaming model has been successfully used to explain many of the observational properties of active galactic nuclei. In this model the total emission is formed by two components, one beamed, one unbeamed. However, the exact contribution from each component in unresolved sources is still not clear. In the radio band, the core and extended emissions are clearly separated. We adopt the method proposed by Kembhavi to separate the two contributions in the X-ray emissions in a sample of 19 gamma-ray loud blazars. It is clearly shown that the beamed emission dominates the X-ray flux and the unbeamed X-ray emission is correlated with the extended radio emission of the considered objects. We also find that the ratio of the beamed to the unbeamed X-ray luminosity is correlated with the X-ray spectral index, an effect that should be a consequence of the underlying X-ray emission mechanism.Fil: Fan, Jun Hui. Guangzhou University. Center for Astrophysics; ChinaFil: Romero, Gustavo Esteban. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Wang, Yong Xiang. College of Science and Trade; ChinaFil: Zhang, Jiang Shui. Guangzhou University. Center for Astrophysics; Chin

    A spectral line survey of IRC +10216 between 13.3 and 18.5 GHz

    Full text link
    A spectral line survey of IRC +10216 between 13.3 and 18.5 GHz is carried out using the Shanghai Tian Ma 65 m Radio Telescope (TMRT-65m) with a sensitivity of < 7 mK. Thirty-five spectral lines of 12 different molecules and radicals are detected in total. Except for SiS, the detected molecules are all carbon-chain molecules, including HC3N, HC5N, HC7N, HC9N, C6H, C6H-, C8H, SiC2, SiC4, c-C3H2 and l-C5H. The presence of rich carbon-bearing molecules is consistent with the identity of IRC +10216 as a carbon-rich AGB star. The excitation temperatures and column densities of the observed species are derived by assuming a local thermodynamic equilibrium and homogeneous conditions.Comment: This is the authors' version of the manuscript; 16 pages, 5 figures, 6 tables; Accepted for publication in A&A 8/17/201

    Interference-aware coordinated power allocation in autonomous Wi-Fi environment

    Full text link
    Self-managed access points (APs) with growing intelligence can optimize their own performances but pose potential negative impacts on others without energy ef ciency. In this paper, we focus on modeling the coordinated interaction among interest-independent and self-con gured APs, and conduct the power allocation case study in the autonomous Wi-Fi scenario. Speci cally, we build a `coordination Wi-Fi platform (CWP), a public platform for APs interacting with each other. OpenWrt-based APs in the physical world are mapped to virtual agents (VAs) in CWP, which communicate with each other through a standard request-reply process de ned as AP talk protocol (ATP).With ATP, an active interference measurement methodology is proposed re ecting both in-range interference and hidden terminal interference, and the Nash bargaining-based power control is further formulated for interference reductions. CWP is deployed in a real of ce environment, where coordination interactions between VAs can bring a maximum 40-Mb/s throughput improvement with the Nash bargaining-based power control in the multi-AP experiments

    Lattice Boltzmann Approach to High-Speed Compressible Flows

    Full text link
    We present an improved lattice Boltzmann model for high-speed compressible flows. The model is composed of a discrete-velocity model by Kataoka and Tsutahara [Phys. Rev. E \textbf{69}, 056702 (2004)] and an appropriate finite-difference scheme combined with an additional dissipation term. With the dissipation term parameters in the model can be flexibly chosen so that the von Neumann stability condition is satisfied. The influence of the various model parameters on the numerical stability is analyzed and some reference values of parameter are suggested. The new scheme works for both subsonic and supersonic flows with a Mach number up to 30 (or higher), which is validated by well-known benchmark tests. Simulations on Riemann problems with very high ratios (1000:11000:1) of pressure and density also show good accuracy and stability. Successful recovering of regular and double Mach shock reflections shows the potential application of the lattice Boltzmann model to fluid systems where non-equilibrium processes are intrinsic. The new scheme for stability can be easily extended to other lattice Boltzmann models.Comment: Figs.11 and 12 in JPEG format. Int. J. Mod. Phys. C (to appear

    Millimeter Spectral Line Mapping Observations Toward Four Massive Star Forming HII Regions

    Full text link
    We present spectral line mapping observations toward four massive star-forming regions (Cepheus A, DR21S, S76E and G34.26+0.15), with the IRAM 30 meter telescope at 2 mm and 3 mm bands. Totally 396 spectral lines from 51 molecules, one helium recombination line, ten hydrogen recombination lines, and 16 unidentified lines were detected in these four sources. An emission line of nitrosyl cyanide (ONCN, 140,14_{0,14}-130,13_{0,13}) was detected in G34.26+0.15, as first detection in massive star-forming regions. We found that the cc-C3_{3}H2_{2} and NH2_{2}D show enhancement in shocked regions as suggested by evidences of SiO and/or SO emission. Column density and rotational temperature of CH3_{3}CN were estimated with the rotational diagram method for all four sources. Isotope abundance ratios of 12^{12}C/13^{13}C were derived using HC3_{3}N and its 13^{13}C isotopologue, which were around 40 in all four massive star-forming regions and slightly lower than the local interstellar value (∼\sim65). 14^{14}N/15^{15}N and 16^{16}O/18^{18}O abundance ratios in these sources were also derived using double isotopic method, which were slightly lower than that in local interstellar medium. Except for Cep A, 33^{33}S/34^{34}S ratio in the other three targets were derived, which were similar to that in the local interstellar medium. The column density ratios of N(DCN)/N(HCN) and N(DCO+^{+})/N(HCO+^{+}) in these sources were more than two orders of magnitude higher than the elemental [D]/[H] ratio, which is 1.5×\times10−5 ^{-5}. Our results show the later stage sources, G34.26+0.15 in particular, present more molecular species than earlier stage ones. Evidence of shock activity is seen in all stages studied.Comment: 32 pages, 11 figures, 8 tables, accepted for publication in MNRA

    Inverted level populations of hydrogen atoms in ionized gas

    Full text link
    Context. Level population inversion of hydrogen atoms in ionized gas may lead to stimulated emission of hydrogen recombination lines, and the level populations can in turn be affected by powerful stimulated emissions. Aims. In this work the interaction of the radiation fields and the level population inversion of hydrogen atoms is studied. The effect of the stimulated emissions on the line profiles is also investigated. Methods. Our previous nl-model for calculating level populations of hydrogen atoms and hydrogen recombination lines is improved. The effects of line and continuum radiation fields on the level populations are considered in the improved model. By using this method the properties of simulated hydrogen recombination lines and level populations are used in analyses. Results. The simulations show that hydrogen radio recombination lines are often emitted from the energy level with an inverted population. The widths of Hnα\alpha lines can be significantly narrowed by strong stimulated emissions to be even less than 10 km s−1^{-1}. The amplification of hydrogen recombination lines is more affected by the line optical depth than by the total optical depth. The influence of stimulated emission on the estimates of electron temperature and density of ionized gas is evaluated. We find that comparing multiple line-to-continuum ratios is a reliable method for estimating the electron temperature, while the effectiveness of the estimation of electron density is determined by the relative significance of stimulated emission.Comment: Accepted for published in A&A. 25 pages, 13 figure

    DDFAD: Dataset Distillation Framework for Audio Data

    Full text link
    Deep neural networks (DNNs) have achieved significant success in numerous applications. The remarkable performance of DNNs is largely attributed to the availability of massive, high-quality training datasets. However, processing such massive training data requires huge computational and storage resources. Dataset distillation is a promising solution to this problem, offering the capability to compress a large dataset into a smaller distilled dataset. The model trained on the distilled dataset can achieve comparable performance to the model trained on the whole dataset. While dataset distillation has been demonstrated in image data, none have explored dataset distillation for audio data. In this work, for the first time, we propose a Dataset Distillation Framework for Audio Data (DDFAD). Specifically, we first propose the Fused Differential MFCC (FD-MFCC) as extracted features for audio data. After that, the FD-MFCC is distilled through the matching training trajectory distillation method. Finally, we propose an audio signal reconstruction algorithm based on the Griffin-Lim Algorithm to reconstruct the audio signal from the distilled FD-MFCC. Extensive experiments demonstrate the effectiveness of DDFAD on various audio datasets. In addition, we show that DDFAD has promising application prospects in many applications, such as continual learning and neural architecture search

    Stealthy Targeted Backdoor Attacks against Image Captioning

    Full text link
    In recent years, there has been an explosive growth in multimodal learning. Image captioning, a classical multimodal task, has demonstrated promising applications and attracted extensive research attention. However, recent studies have shown that image caption models are vulnerable to some security threats such as backdoor attacks. Existing backdoor attacks against image captioning typically pair a trigger either with a predefined sentence or a single word as the targeted output, yet they are unrelated to the image content, making them easily noticeable as anomalies by humans. In this paper, we present a novel method to craft targeted backdoor attacks against image caption models, which are designed to be stealthier than prior attacks. Specifically, our method first learns a special trigger by leveraging universal perturbation techniques for object detection, then places the learned trigger in the center of some specific source object and modifies the corresponding object name in the output caption to a predefined target name. During the prediction phase, the caption produced by the backdoored model for input images with the trigger can accurately convey the semantic information of the rest of the whole image, while incorrectly recognizing the source object as the predefined target. Extensive experiments demonstrate that our approach can achieve a high attack success rate while having a negligible impact on model clean performance. In addition, we show our method is stealthy in that the produced backdoor samples are indistinguishable from clean samples in both image and text domains, which can successfully bypass existing backdoor defenses, highlighting the need for better defensive mechanisms against such stealthy backdoor attacks

    Gametophytic Self-Incompatibility Is Operative in Miscanthus sinensis (Poaceae) and Is Affected by Pistil Age

    Get PDF
    Miscanthus sinensis Anderss. (Poaceae) has desirable traits for a dedicated biomass crop. An important breeding goal for M. sinensis is to develop F1 hybrid cultivars. A clear understanding of its reproductive mode will help to identify effective breeding strategies toward that goal. We performed \u3e1000 semi-in-vivo reciprocal crosses and self-pollinations to determine pollen–pistil compatibility responses. Self-pollination showed a self-incompatibility (SI) response typical for grasses, indicating that SI is operative in M. sinensis. The majority of self-pollen produced short tubes that terminated at the stigmatic surface of mature pistils, but some self-pollen tubes entered into the transmitting tract. The developmental stage of pistils affects pollen–pistil interactions, as younger pistils allowed significantly more self-pollen to enter the transmitting tract, with some even reaching the ovule. Cross pollinations among progeny of reciprocal crosses between the cultivar Gross Fontaine and the cultivar Undine showed four classes of compatibility responses with 0, 50, 75, and 100% compatible pollen and exhibited differences in reciprocal compatibility for certain crosses. Taken together, our results showed that SI in M. sinensis is gametophytic and is likely controlled by a multiallelic, two-locus S and Z system, similar to those reported for other grasses. The findings from this study will facilitate the identification and isolation of genes related to SI and ultimately F1 hybrid production in M. sinensis

    Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction

    Get PDF
    Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson {\it et al.} [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fan-like electron outflow region including three well-collimated electron jets appears. The (>1>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS
    • …
    corecore