3,301 research outputs found
Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons
In modern integrated circuits and wireless communication systems/devices,
three key features need to be solved simultaneously to reach higher performance
and more compact size: signal integrity, interference suppression, and
miniaturization. However, the above-mentioned requests are almost contradictory
using the traditional techniques. To overcome this challenge, here we propose
time-domain spoof surface plasmon polaritons (SPPs) as the carrier of signals.
By designing a special plasmonic waveguide constructed by printing two narrow
corrugated metallic strips on the top and bottom surfaces of a dielectric
substrate with mirror symmetry, we show that spoof SPPs are supported from very
low frequency to the cutoff frequency with strong subwavelength effects, which
can be converted to the time-domain SPPs. When two such plasmonic waveguides
are tightly packed with deep-subwavelength separation, which commonly happens
in the integrated circuits and wireless communications due to limited space, we
demonstrate theoretically and experimentally that SPP signals on such two
plasmonic waveguides have better propagation performance and much less mutual
coupling than the conventional signals on two traditional microstrip lines with
the same size and separation. Hence the proposed method can achieve significant
interference suppression in very compact space, providing a potential solution
to break the challenge of signal integrity
Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture
For long distance orbital angular momentum (OAM) based transmission, the conventional whole beam receiving scheme encounters the difficulty of large aperture due to the divergence of OAM beams. We propose a novel partial receiving scheme, using a restricted angular aperture to receive and demultiplex multi-OAM-mode beams. The scheme is theoretically analyzed to show that a regularly spaced OAM mode set remain orthogonal and therefore can be de-multiplexed. Experiments have been carried out to verify the feasibility. This partial receiving scheme can serve as an effective method with both space and cost savings for the OAM communications. It is applicable to both free space OAM optical communications and radio frequency (RF) OAM communications
A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature
Carbon dots (CDs) as a class of heavy-metal-free fluorescent nanomaterials has drawn increasing attention in recent years due to their high optical absorptivity, chemical stability, biocompatibility, and low toxicity. Herein, we report a facile method to prepare stable CDs by hydrothermal treatment of glucose (glc) in the presence of glutathione (GSH). With this approach, the formation and the surface passivation of CDs are carried out simultaneously, resulting in intrinsic fluorescence emission. The influence of reaction temperature, reaction time and feed ratio of GSH/glc on the photoluminescence property of CDs is studied. The as-prepared CDs are characterized by UV–Vis, photoluminescence, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscope, from which their structural information and property are interpreted. These CDs may be useful as pH sensors or as versatile nanothermometry devices based on the pronounced temperature dependence of their steady-state fluorescence emission spectra, which changes considerably over the physiological temperature range (15–60 °C).This work was supported by the National Natural Science Foundation of China (No. 50925207), the Natural Science Foundation of Jiangsu Province, China (BK20140157), Programme of Introducing Talents of Discipline to Universities (111 Project B13025), and the Fundamental Research Funds for the Central Universities (JUSRP11418)
- …
