8,805 research outputs found
Coronary Artery Segmentation and Motion Modelling
Conventional coronary artery bypass surgery requires invasive sternotomy and the
use of a cardiopulmonary bypass, which leads to long recovery period and has high
infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery
based on image guided robotic surgical approaches have been developed to allow the
clinicians to conduct the bypass surgery off-pump with only three pin holes incisions
in the chest cavity, through which two robotic arms and one stereo endoscopic camera
are inserted. However, the restricted field of view of the stereo endoscopic images leads
to possible vessel misidentification and coronary artery mis-localization. This results
in 20-30% conversion rates from TECAB surgery to the conventional approach.
We have constructed patient-specific 3D + time coronary artery and left ventricle
motion models from preoperative 4D Computed Tomography Angiography (CTA)
scans. Through temporally and spatially aligning this model with the intraoperative
endoscopic views of the patient's beating heart, this work assists the surgeon to identify
and locate the correct coronaries during the TECAB precedures. Thus this work has
the prospect of reducing the conversion rate from TECAB to conventional coronary
bypass procedures.
This thesis mainly focus on designing segmentation and motion tracking methods
of the coronary arteries in order to build pre-operative patient-specific motion models.
Various vessel centreline extraction and lumen segmentation algorithms are presented,
including intensity based approaches, geometric model matching method and
morphology-based method. A probabilistic atlas of the coronary arteries is formed
from a group of subjects to facilitate the vascular segmentation and registration procedures.
Non-rigid registration framework based on a free-form deformation model
and multi-level multi-channel large deformation diffeomorphic metric mapping are
proposed to track the coronary motion. The methods are applied to 4D CTA images
acquired from various groups of patients and quantitatively evaluated
First-principles calculations of phase transition, elasticity, and thermodynamic properties for TiZr alloy
tructural transformation, pressure dependent elasticity behaviors, phonon,
and thermodynamic properties of the equiatomic TiZr alloy are investigated by
using first-principles density-functional theory. Our calculated lattice
parameters and equation of state for and phases as well as
the phase transition sequence of
are
consistent well with experiments. Elastic constants of and
phases indicate that they are mechanically stable. For cubic phase,
however, it is mechanically unstable at zero pressure and the critical pressure
for its mechanical stability is predicted to equal to 2.19 GPa. We find that
the moduli, elastic sound velocities, and Debye temperature all increase with
pressure for three phases of TiZr alloy. The relatively large values
illustrate that the TiZr alloy is rather ductile and its ductility is more
predominant than that of element Zr, especially in phase. Elastic wave
velocities and Debye temperature have abrupt increase behaviors upon the
transition at around 10 GPa and exhibit
abrupt decrease feature upon the
transition at higher pressure. Through Mulliken population analysis, we
illustrate that the increase of the \emph{d}-band occupancy will stabilize the
cubic phase. Phonon dispersions for three phases of TiZr alloy are
firstly presented and the phase phonons clearly indicate its
dynamically unstable nature under ambient condition. Thermodynamics of Gibbs
free energy, entropy, and heat capacity are obtained by quasiharmonic
approximation and Debye model.Comment: 9 pages, 10 figure
Algebraic Cayley Graphs over Finite Fields
A new algebraic Cayley graph is constructed using finite fields. Its
connectedness and diameter bound are studied via Weil's estimate for character
sums. These graphs provide a new source of expander graphs, extending classical
results of Chung
Passive fault-tolerant control for vehicle active suspension system based on H2/H∞ approach
In this paper, a robust passive fault-tolerant control (RPFTC) strategy based on H2/H∞ approach and an integral sliding mode passive fault tolerant control (ISMPFTC) strategy based on H2/H∞ approach for vehicle active suspension are presented with considering model uncertainties, loss of actuator effectiveness and time-domain hard constraints of the suspension system. H∞ performance index less than γ and H2 performance index is minimized as the design objective, avoid choosing weighting coefficient. The half-car model is taken as an example, the robust passive fault-tolerant controller and the integral sliding mode passive fault tolerant control law is designed respectively. Three different fault modes are selected. And then compare and analyze the control effect of vertical acceleration of the vehicle body and pitch angular acceleration of passive suspension control, robust passive fault tolerant control and integral sliding mode passive fault tolerant control to verify the feasibility and effectiveness of passive fault tolerant control algorithm of active suspension. The studies we have performed indicated that the passive fault tolerant control strategy of the active suspension can improve the ride comfort of the suspension system
- …