9 research outputs found

    Dynamics of Surface Fluctuations on Macrocyclic Melts

    No full text
    A hydrodynamic continuum theory (HCT) of thermally stimulated capillary waves describing surface fluctuations of linear polystyrene melts is found to describe surface fluctuations of sufficiently thick films of unentangled cyclic polystyrene. However, for cyclic polystyrene (CPS) films thinner than 10<i>R</i><sub>g</sub>, the surface fluctuations are slower than expected from the HCT universal scaling, revealing a confinement effect active over length scales much larger than <i>R</i><sub>g</sub>. Surface fluctuations of CPS films can be slower than those of films of linear polystyrene analogues, due to differences between the glass transition temperatures, <i>T</i><sub>g</sub>, of the linear and cyclic chains. The temperature dependences of the surface fluctuations match those of bulk viscosities, suggesting that whole chain dynamics dictate the surface height fluctuation dynamics at temperatures 25–60 °C above <i>T</i><sub>g</sub>. When normalized surface relaxation rates of thicker films are plotted as a function of <i>T</i>/<i>T</i><sub>g</sub>, a universal temperature behavior is observed for linear and cyclic chains

    Crystallization Mechanism and Charge Carrier Transport in MAPLE-Deposited Conjugated Polymer Thin Films

    No full text
    Although spin casting and chemical surface reactions are the most common methods used for fabricating functional polymer films onto substrates, they are limited with regard to producing films of certain morphological characteristics on different wetting and nonwetting substrates. The matrix-assisted pulsed laser evaporation (MAPLE) technique offers advantages with regard to producing films of different morphologies on different types of substrates. Here, we provide a quantitative characterization, using X-ray diffraction and optical methods, to elucidate the additive growth mechanism of MAPLE-deposited poly­(3-hexylthiophene) (P3HT) films on substrates that have undergone different surface treatments, enabling them to possess different wettabilities. We show that MAPLE-deposited films are composed of crystalline phases, wherein the overall P3HT aggregate size and crystallite coherence length increase with deposition time. A complete pole figure constructed from X-ray diffraction measurements reveals that in these MAPLE-deposited films, there exist two distinct crystallite populations: (i) highly oriented crystals that grow from the flat dielectric substrate and (ii) misoriented crystals that preferentially grow on top of the existing polymer layers. The growth of the highly oriented crystals is highly sensitive to the chemistry of the substrate, whereas the effect of substrate chemistry on misoriented crystal growth is weaker. The use of a self-assembled monolayer to treat the substrate greatly enhances the population and crystallite coherence length at the buried interfaces, particularly during the early stage of deposition. The evolution of the in-plane carrier mobilities during the course of deposition is consistent with the development of highly oriented crystals at the buried interface, suggesting that this interface plays a key role toward determining carrier transport in organic thin-film transistors

    In-Situ GISAXS Investigation of Pore Orientation Effects on the Thermal Transformation Mechanism in Mesoporous Titania Thin Films

    No full text
    This study addresses the effects of mesopore orientation on mesostructural stability and crystallization of titania thin films during calcination based on measurements with in-situ grazing incidence small angle X-ray scattering (GISAXS). Complementary supporting information is provided by ex-situ electron microscopy. Pluronic surfactant P123 (with average structure (EO)<sub>20</sub>(PO)<sub>70</sub>(EO)<sub>20</sub> where EO is an ethylene oxide unit and PO is a propylene oxide unit) serves as the template to synthesize titania thin films on P123-modified glass slides with 2D hexagonally close-packed cylindrical mesopores. The orientation of the pores at the top surface is controlled by sandwiching another P123-modified glass slide on top of the titania thin film to completely orient the pores orthogonal to the films in some samples. This provides the opportunity to directly observe how pore orientation affects the evolution of pore order and crystallinity during calcination. The results show that when the pores are oriented parallel to the substrate at the top surface (for unsandwiched films), the pore structure is stable upon calcination at 400 °C but that the structure is quickly lost due to crystallization throughout the film during calcination at 500 °C. Films with pores oriented orthogonal to the substrate at the top surface (sandwiched films) retain their long-range pore order even after calcination at 500 °C. The reasons for this difference are ascribed to greater resistance to anisotropic stress during heating of the orthogonally oriented pores and titania crystallization nucleation at the top surface of the films with orthogonally oriented pores

    <i>In Situ</i> Nanoscale Characterization of Water Penetration through Plasma Polymerized Coatings

    No full text
    The search continues for means of making quick determinations of the efficacy of a coating for protecting a metal surface against corrosion. One means of reducing the time scale needed to differentiate the performance of different coatings is to draw from nanoscale measurements inferences about macroscopic behavior. Here we connect observations of the penetration of water into plasma polymerized (PP) protective coatings and the character of the interface between the coating and an oxide-coated aluminum substrate or model oxide-coated silicon substrate to the macroscopically observable corrosion for those systems. A plasma polymerized film from hexamethyl­disiloxane (HMDSO) monomer is taken as illustrative of a hydrophobic coating, while a PP film from maleic anhydride (MA) is used as a characteristically hydrophilic coating. The neutron reflectivity (NR) of films on silicon oxide coated substrates shows that water moves more readily through the hydrophilic PP–MA film. Off-specular X-ray scattering indicates the PP–MA film on aluminum is less conformal with the substrate than is the PP–HMDSO film. Measurements with infrared–visible sum frequency generation spectroscopy (SFG), which probes the chemical nature of the interface, make clear that the chemical interactions between coating and aluminum oxide are disrupted by interfacial water. With this water penetration and interface disruption, macroscopic corrosion can occur much more rapidly. An Al panel coated with PP–MA corrodes after 1 day in salt spray, while a similarly thin (∼30 nm) PP–HMDSO coating protects an Al panel for a period on the order of one month

    Three-dimensional Hard X-ray Ptychographic Reflectometry Imaging on Extended Mesoscopic Surface Structures

    No full text
    Many nano and quantum devices, with their sizes often spanning from millimeters down to sub-nanometer, have intricate low-dimensional, non-uniform, or hierarchical structures on surfaces and interfaces. Since their functionalities are dependent on these structures, high-resolution surface-sensitive characterization becomes imperative to gain a comprehensive understanding of the function-structure relationship. We thus developed hard X-ray ptychographic reflectometry imaging, a new technique that merges the high-resolution two-dimensional imaging capabilities of hard X-ray ptychography for extended objects, with the high-resolution depth profiling capabilities of X-ray reflectivity for layered structures. The synergy of these two methods fully leverages both amplitude and phase information from ptychography reconstruction to not only reveal surface topography and localized structures such as shapes and electron densities, but also yields statistical details such as interfacial roughness that is not readily accessible through coherent imaging solely. The hard X-ray ptychographic reflectometry imaging is well-suited for three-dimensional imaging of mesoscopic samples, particularly those comprising planar or layered nanostructures on opaque supports, and could also offer a high-resolution surface metrology and defect analysis on semiconductor devices such as integrated nanocircuits and lithographic photomasks for microchip fabrications

    Thickness-Dependent Order-to-Order Transitions of Bolaform-like Giant Surfactant in Thin Films

    No full text
    Controlling self-assembled nanostructures in thin films allows the bottom-up fabrication of ordered nanoscale patterns. Here we report the unique thickness-dependent phase behavior in thin films of a bolaform-like giant surfactant, which consists of butyl- and hydroxyl-functionalized polyhedral oligomeric silsesquioxane (BPOSS and DPOSS) cages telechelically located at the chain ends of a polystyrene (PS) chain with 28 repeating monomers on average. In the bulk, BPOSS-PS<sub>28</sub>-DPOSS forms a double gyroid (DG) phase. Both grazing incidence small-angle X-ray scattering and transmission electron microscopy techniques are combined to elucidate the thin film structures. Interestingly, films with thicknesses thinner than 200 nm exhibit an irreversible phase transition from hexagonal perforated layer (HPL) to compressed hexagonally packed cylinders (c-HEX) at 130 °C, while films with thickness larger than 200 nm show an irreversible transition from HPL to DG at 200 °C. The thickness-controlled transition pathway suggests possibilities to obtain diverse patterns via thin film self-assembly

    Revealing the Interfacial Self-Assembly Pathway of Large-Scale, Highly-Ordered, Nanoparticle/Polymer Monolayer Arrays at an Air/Water Interface

    No full text
    The pathway of interfacial self-assembly of large-scale, highly ordered 2D nanoparticle/polymer monolayer or bilayer arrays from a toluene solution at an air/water interface was investigated using grazing-incidence small-angle scattering at a synchrotron source. Interfacial-assembly of the ordered nanoparticle/polymer array was found to occur through two stages: formation of an incipient randomly close-packed interfacial monolayer followed by compression of the monolayer to form a close-packed lattice driven by solvent evaporation from the polymer. Because the nanoparticles are hydrophobic, they localize exclusively to the polymer–air interface during self-assembly, creating a through thickness asymmetric film as confirmed by X-ray reflectivity. The interfacial self-assembly approach can be extended to form binary NP/polymer arrays. It is anticipated that by understanding the interfacial self-assembly pathway, this simple evaporative procedure could be conducted as a continuous process amenable to large area nanoparticle-based manufacturing needed for emerging energy technologies

    Revealing the Interfacial Self-Assembly Pathway of Large-Scale, Highly-Ordered, Nanoparticle/Polymer Monolayer Arrays at an Air/Water Interface

    No full text
    The pathway of interfacial self-assembly of large-scale, highly ordered 2D nanoparticle/polymer monolayer or bilayer arrays from a toluene solution at an air/water interface was investigated using grazing-incidence small-angle scattering at a synchrotron source. Interfacial-assembly of the ordered nanoparticle/polymer array was found to occur through two stages: formation of an incipient randomly close-packed interfacial monolayer followed by compression of the monolayer to form a close-packed lattice driven by solvent evaporation from the polymer. Because the nanoparticles are hydrophobic, they localize exclusively to the polymer–air interface during self-assembly, creating a through thickness asymmetric film as confirmed by X-ray reflectivity. The interfacial self-assembly approach can be extended to form binary NP/polymer arrays. It is anticipated that by understanding the interfacial self-assembly pathway, this simple evaporative procedure could be conducted as a continuous process amenable to large area nanoparticle-based manufacturing needed for emerging energy technologies

    Tunable Affinity and Molecular Architecture Lead to Diverse Self-Assembled Supramolecular Structures in Thin Films

    No full text
    The self-assembly behavior of specifically designed giant surfactants is systematically studied in thin films using grazing incidence X-ray scattering and transmission electron microscopy, focusing on the effects of molecular nanoparticle (MNP) functionalities and molecular architectures on nanostructure formation. Two MNPs with different surface functionalities, <i>i.e</i>., hydrophilic carboxylic acid functionalized [60]­fullerene (AC<sub>60</sub>) and omniphobic fluorinated polyhedral oligomeric silsesquioxane (FPOSS), are utilized as the head portions of the giant surfactants. By covalently tethering these functional MNPs onto the end point or junction point of polystyrene-<i>block</i>-poly­(ethylene oxide) (PS-<i>b</i>-PEO) diblock copolymer, linear and star-like giant surfactants with different molecular architectures are constructed. With fixed length of the PEO block, changing the molecular weight of the PS block leads to the formation of various ordered phases and phase transitions. Due to the distinct affinity, the AC<sub>60</sub>-based and FPOSS-based giant surfactants form two- or three-component morphologies, respectively. A stretching parameter for the PS block is introduced to characterize the PS chain conformation in the different morphologies. The highly diverse self-assembled nanostructures with high etch resistance between components in small dimensions obtained from the giant surfactant thin films suggest that these macromolecules could provide a promising and robust platform for nanolithography applications
    corecore