1 research outputs found
Proteomics and phosphoproteomics analysis of tissues for the reoccurrence prediction of colorectal cancer
Many stage II/III colorectal cancer (CRC) patients may relapse after routine treatments. Aberrant phosphorylation can regulate pathophysiological processes of tumors, and finding characteristic protein phosphorylation is an efficient approach for the prediction of CRC relapse. We compared the tissue proteome and phosphoproteome of stage II/III CRC patients between the relapsed group (n = 5) and the non-relapsed group (n = 5). Phosphopeptides were enriched with Ti4+-IMAC material. We utilized label-free quantification-based proteomics to screen differentially expressed proteins and phosphopeptides between the two groups. Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA) were used for bioinformatics analysis. The immune response of the relapsed group (Z-score −2.229) was relatively poorer than that of the non-relapsed group (Z-score 1.982), while viability of tumor was more activated (Z-score 2.895) in the relapsed group, which might cause increased relapse risk. The phosphorylation degrees of three phosphosites (phosphosite 1362 of TP53BP1, phosphosite 809 of VCL and phosphosite 438 of STK10) might be reliable prognostic biomarkers. Some promising proteins and phosphopeptides were discovered to predict the relapse risk in postoperative follow-ups.</p