930 research outputs found
Spectral Properties and Linear Stability of Self-Similar Wave Maps
We study co--rotational wave maps from --Minkowski space to the
three--sphere . It is known that there exists a countable family
of self--similar solutions. We investigate their stability under linear
perturbations by operator theoretic methods. To this end we study the spectra
of the perturbation operators, prove well--posedness of the corresponding
linear Cauchy problem and deduce a growth estimate for solutions. Finally, we
study perturbations of the limiting solution which is obtained from by
letting .Comment: Some extensions added to match the published versio
Tunable Superconducting Phase Transition in Metal-Decorated Graphene Sheets
Using typical experimental techniques it is difficult to separate the effects
of carrier density and disorder on the superconducting transition in two
dimensions. Using a simple fabrication procedure based on metal layer
dewetting, we have produced graphene sheets decorated with a non-percolating
network of nanoscale tin clusters. These metal clusters both efficiently dope
the graphene substrate and induce long-range superconducting correlations. This
allows us to study the superconducting transition at fixed disorder and
variable carrier concentration. We find that despite structural inhomogeneity
on mesoscopic length scales (10-100 nm), this material behaves electronically
as a homogenous dirty superconductor. Our simple self-assembly method
establishes graphene as an ideal tunable substrate for studying induced
two-dimensional electronic systems at fixed disorder and our technique can
readily be extended to other order parameters such as magnetism
Chemical doping of individual semiconducting carbon-nanotube ropes
We report the effects of potassium doping on the conductance of individual semiconducting single-walled carbon nanotube ropes. We are able to control the level of doping by reversibly intercalating and de-intercalating potassium. Potassium doping changes the carriers in the ropes from holes to electrons. Typical values for the carrier density are found to be ∼100–1000 electrons/μm. The effective mobility for the electrons is μeff∼20–60 cm2 V-1 s-1, a value similar to that reported for the hole effective mobility in nanotubes [R. Martel et al., Appl. Phys. Lett. 73, 2447 (1998)]
Recommended from our members
Geometry and electronic structure of iridium adsorbed on graphene
We report investigation of the geometry and electronic structure of iridium atoms adsorbed onto graphene through a combined experimental and theoretical study. Ir atoms were deposited onto a flake of graphene on a Pt(111) surface and found to form clusters even at low temperatures. The areal density of the observed clusters on the graphene flake suggests the clusters are most likely pairs of Ir atoms. Theoretical ab initio density functional (DFT) calculations indicate that these Ir dimers are oriented horizontally, near neighboring "bridge" sites of the graphene lattice, as this configuration has the strongest adsorption energy of all high-symmetry configurations for the Ir dimer. A large peak in the local density of states (LDOS) at the Dirac point energy was measured via scanning tunneling spectroscopy, and this result is reproduced by a DFT calculation of the LDOS. The peak at the Dirac point energy is found to be from the Ir s and p states. The LDOS in the monomer case was also calculated, and is found to significantly differ from the experimentally determined data, further supporting the hypothesis of low-temperature clustering
Instability of two dimensional graphene: Breaking sp2 bonds with soft X-rays
We study the stability of various kinds of graphene samples under soft X-ray
irradiation. Our results show that in single layer exfoliated graphene (a
closer analogue to two dimensional material), the in-plane carbon-carbon bonds
are unstable under X-ray irradiation, resulting in nanocrystalline structures.
As the interaction along the third dimension increases by increasing the number
of graphene layers or through the interaction with the substrate (epitaxial
graphene), the effect of X-ray irradiation decreases and eventually becomes
negligible for graphite and epitaxial graphene. Our results demonstrate the
importance of the interaction along the third dimension in stabilizing the long
range in-plane carbon-carbon bonding, and suggest the possibility of using
X-ray to pattern graphene nanostructures in exfoliated graphene.Comment: 4 pages, 3 figures, Phys. Rev. B rapid communication, in pres
Recommended from our members
Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures
A key feature of two-dimensional materials is that the sign and concentration of their carriers can be externally controlled with techniques such as electrostatic gating. However, conventional electrostatic gating has limitations, including a maximum carrier density set by the dielectric breakdown, and ionic liquid gating and direct chemical doping also suffer from drawbacks. Here, we show that an electron-beam-induced doping technique can be used to reversibly write high-resolution doping patterns in hexagonal boron nitride-encapsulated graphene and molybdenum disulfide (MoS2) van der Waals heterostructures. The doped MoS2 device exhibits an order of magnitude decrease of subthreshold swing compared with the device before doping, whereas the doped graphene devices demonstrate a previously inaccessible regime of high carrier concentration and high mobility, even at room temperature. We also show that the approach can be used to write high-quality p–n junctions and nanoscale doping patterns, illustrating that the technique can create nanoscale circuitry in van der Waals heterostructures
- …