4 research outputs found

    3D Graphene Functionalized by Covalent Organic Framework Thin Film as Capacitive Electrode in Alkaline Media

    No full text
    To harness the electroactivity of anthraquinone as an electrode material, a great recent effort have been invested to composite anthraquinone with carbon materials to improve the conductivity. Here we report on a noncovalent way to modify three-dimensional graphene with anthraquinone moieties through on-surface synthesis of two-dimensional covalent organic frameworks. We incorporate 2,6-diamino-anthraquinone moieties into COF through Schiff-base reaction with benzene-1,3,5-tricarbaldehyde. The synthesized COF -graphene composite exhibits large specific capacitance of 31.7 mF/cm<sup>2</sup>. Long-term galvanostatic charge/discharge cycling experiments revealed a decrease of capacitance, which was attributed to the loss of COF materials and electrostatic repulsion accumulated during charge–discharge circles which result in the poor electrical conductivity between 2D COF layers

    Thermally Induced Transformation of Nonhexagonal Carbon Rings in Graphene-like Nanoribbons

    No full text
    Exploring the structural transformation of nonhexagonal rings is of fundamental importance for understanding the thermal stability of nonhexagonal rings and revealing the structure–property relationships. Here, we report on the thermally induced transformation from the fused tetragon-hexagon (4–6) carbon rings to a pair of pentagon (5–5) rings in the graphene-like nanoribbons periodically embedded with tetragon and octagon (4–8–4) carbon rings. A distinct contrast among tetragon, pentagon, hexagon, and octagon carbon rings is provided by noncontact atomic force microscopy with atomic resolution. The thermally activated bond rotation with the dissociation of the shared carbon dimer between the 4–6 carbon rings is the key step for the 4–6 to 5–5 transformation. The energy barrier of the bond rotation, which results in the formation of an irregular octagon ring in the transition state, is calculated to be 1.13 eV. The 5–5 defects markedly change the electronic local density of states of the graphene-like nanoribbon, as observed by scanning tunneling microscopy. Our density functional theory calculations indicate that the introduction of periodically embedded 5–5 rings will significantly narrow the electronic band gap of the graphene-like nanoribbons

    Direct Formation of C–C Double-Bonded Structural Motifs by On-Surface Dehalogenative Homocoupling of <i>gem</i>-Dibromomethyl Molecules

    No full text
    Conductive polymers are of great importance in a variety of chemistry-related disciplines and applications. The recently developed bottom-up on-surface synthesis strategy provides us with opportunities for the fabrication of various nanostructures in a flexible and facile manner, which could be investigated by high-resolution microscopic techniques in real space. Herein, we designed and synthesized molecular precursors functionalized with benzal <i>gem</i>-dibromomethyl groups. A combination of scanning tunneling microscopy, noncontact atomic force microscopy, high-resolution synchrotron radiation photoemission spectroscopy, and density functional theory calculations demonstrated that it is feasible to achieve the direct formation of C–C double-bonded structural motifs <i>via</i> on-surface dehalogenative homocoupling reactions on the Au(111) surface. Correspondingly, we convert the sp<sup>3</sup>-hybridized state to an sp<sup>2</sup>-hybridized state of carbon atoms, <i>i</i>.<i>e</i>., from an alkyl group to an alkenyl one. Moreover, by such a bottom-up strategy, we have successfully fabricated poly­(phenylenevinylene) chains on the surface, which is anticipated to inspire further studies toward understanding the nature of conductive polymers at the atomic scale
    corecore