7 research outputs found

    Water Vapor Condensation on Iron Minerals Spontaneously Produces Hydroxyl Radical

    No full text
    The hydroxyl radical (•OH) is a potent oxidant and key reactive species in mediating element cycles and pollutant dynamics in the natural environment. The natural source of •OH is historically linked to photochemical processes (e.g., photoactivation of natural organic matter or iron minerals) or redox chemical processes (e.g., reaction of microbe-excreted or reduced iron/natural organic matter/sulfide-released electrons with O2 in soils and sediments). This study revealed a ubiquitous source of •OH production via water vapor condensation on iron mineral surfaces. Distinct •OH productions (15–478 nM via water vapor condensation) were observed on all investigated iron minerals of abundant natural occurrence (i.e., goethite, hematite, and magnetite). The spontaneous •OH productions were triggered by contact electrification and Fenton-like activation of hydrogen peroxide (H2O2) at the water–iron mineral interface. Those •OH drove efficient transformation of organic pollutants associated on iron mineral surfaces. After 240 cycles of water vapor condensation and evaporation, bisphenol A and carbamazepine degraded by 25%–100% and 16%–51%, respectively, forming •OH-mediated arene/alkene hydroxylation products. Our findings largely broaden the natural source of •OH. Given the ubiquitous existence of iron minerals on Earth’s surface, those newly discovered •OH could play a role in the transformation of pollutants and organic carbon associated with iron mineral surfaces

    Water Vapor Condensation on Iron Minerals Spontaneously Produces Hydroxyl Radical

    No full text
    The hydroxyl radical (•OH) is a potent oxidant and key reactive species in mediating element cycles and pollutant dynamics in the natural environment. The natural source of •OH is historically linked to photochemical processes (e.g., photoactivation of natural organic matter or iron minerals) or redox chemical processes (e.g., reaction of microbe-excreted or reduced iron/natural organic matter/sulfide-released electrons with O2 in soils and sediments). This study revealed a ubiquitous source of •OH production via water vapor condensation on iron mineral surfaces. Distinct •OH productions (15–478 nM via water vapor condensation) were observed on all investigated iron minerals of abundant natural occurrence (i.e., goethite, hematite, and magnetite). The spontaneous •OH productions were triggered by contact electrification and Fenton-like activation of hydrogen peroxide (H2O2) at the water–iron mineral interface. Those •OH drove efficient transformation of organic pollutants associated on iron mineral surfaces. After 240 cycles of water vapor condensation and evaporation, bisphenol A and carbamazepine degraded by 25%–100% and 16%–51%, respectively, forming •OH-mediated arene/alkene hydroxylation products. Our findings largely broaden the natural source of •OH. Given the ubiquitous existence of iron minerals on Earth’s surface, those newly discovered •OH could play a role in the transformation of pollutants and organic carbon associated with iron mineral surfaces

    Spontaneous Oxidation of Thiols and Thioether at the Air–Water Interface of a Sea Spray Microdroplet

    No full text
    The transport of dissolved organic sulfur, including thiols and thioethers, from the ocean surface to the atmosphere through sea spray aerosol (SSA) is of great importance for the global sulfur cycle. Thiol/thioether in SSA undergoes rapid oxidation that is historically linked to photochemical processes. Here, we report the discovery of a non-photochemical, spontaneous path of thiol/thioether oxidation in SSA. Among 10 investigated naturally abundant thiol/thioether, seven species displayed rapid oxidation in SSA, with disulfide, sulfoxide, and sulfone comprising the major products. We suggest that such spontaneous oxidation of thiol/thioether was mainly fueled by thiol/thioether enrichment at the air–water interface and generation of highly reactive radicals by the loss of an electron from ions (e.g., glutathionyl radical produced from ionization of deprotonated glutathione) at or near the surface of the water microdroplet. Our work sheds light on a ubiquitous but previously overlooked pathway of thiol/thioether oxidation, which could contribute to an accelerated sulfur cycle as well as related metal transformation (e.g., mercury) at ocean–atmosphere interfaces

    Spontaneous Oxidation of Thiols and Thioether at the Air–Water Interface of a Sea Spray Microdroplet

    No full text
    The transport of dissolved organic sulfur, including thiols and thioethers, from the ocean surface to the atmosphere through sea spray aerosol (SSA) is of great importance for the global sulfur cycle. Thiol/thioether in SSA undergoes rapid oxidation that is historically linked to photochemical processes. Here, we report the discovery of a non-photochemical, spontaneous path of thiol/thioether oxidation in SSA. Among 10 investigated naturally abundant thiol/thioether, seven species displayed rapid oxidation in SSA, with disulfide, sulfoxide, and sulfone comprising the major products. We suggest that such spontaneous oxidation of thiol/thioether was mainly fueled by thiol/thioether enrichment at the air–water interface and generation of highly reactive radicals by the loss of an electron from ions (e.g., glutathionyl radical produced from ionization of deprotonated glutathione) at or near the surface of the water microdroplet. Our work sheds light on a ubiquitous but previously overlooked pathway of thiol/thioether oxidation, which could contribute to an accelerated sulfur cycle as well as related metal transformation (e.g., mercury) at ocean–atmosphere interfaces

    Spontaneous Oxidation of Thiols and Thioether at the Air–Water Interface of a Sea Spray Microdroplet

    No full text
    The transport of dissolved organic sulfur, including thiols and thioethers, from the ocean surface to the atmosphere through sea spray aerosol (SSA) is of great importance for the global sulfur cycle. Thiol/thioether in SSA undergoes rapid oxidation that is historically linked to photochemical processes. Here, we report the discovery of a non-photochemical, spontaneous path of thiol/thioether oxidation in SSA. Among 10 investigated naturally abundant thiol/thioether, seven species displayed rapid oxidation in SSA, with disulfide, sulfoxide, and sulfone comprising the major products. We suggest that such spontaneous oxidation of thiol/thioether was mainly fueled by thiol/thioether enrichment at the air–water interface and generation of highly reactive radicals by the loss of an electron from ions (e.g., glutathionyl radical produced from ionization of deprotonated glutathione) at or near the surface of the water microdroplet. Our work sheds light on a ubiquitous but previously overlooked pathway of thiol/thioether oxidation, which could contribute to an accelerated sulfur cycle as well as related metal transformation (e.g., mercury) at ocean–atmosphere interfaces

    Accelerated Photolysis of H<sub>2</sub>O<sub>2</sub> at the Air–Water Interface of a Microdroplet

    No full text
    Photochemical homolysis of hydrogen peroxide (H2O2) occurs widely in nature and is a key source of hydroxyl radicals (·OH). The kinetics of H2O2 photolysis play a pivotal role in determining the efficiency of ·OH production, which is currently mainly investigated in bulk systems. Here, we report considerably accelerated H2O2 photolysis at the air–water interface of microdroplets, with a rate 1.9 × 103 times faster than that in bulk water. Our simulations show that due to the trans quasiplanar conformational preference of H2O2 at the air–water interface compared to the bulk or gas phase, the absorption peak in the spectrum of H2O2 is significantly redshifted by 45 nm, corresponding to greater absorbance of photons in the sunlight spectrum and faster photolysis of H2O2. This discovery has great potential to solve current problems associated with ·OH-centered heterogeneous photochemical processes in aerosols. For instance, we show that accelerated H2O2 photolysis in microdroplets could lead to markedly enhanced oxidation of SO2 and volatile organic compounds
    corecore