241 research outputs found

    The New Resonating Valence Bond Method for Ab-Initio Electronic Simulations

    Full text link
    The Resonating Valence Bond theory of the chemical bond was introduced soon after the discovery of quantum mechanics and has contributed to explain the role of electron correlation within a particularly simple and intuitive approach where the chemical bond between two nearby atoms is described by one or more singlet electron pairs. In this chapter Pauling's resonating valence bond theory of the chemical bond is revisited within a new formulation, introduced by P.W. Anderson after the discovery of High-Tc superconductivity. It is shown that this intuitive picture of electron correlation becomes now practical and efficient, since it allows us to faithfully exploit the locality of the electron correlation, and to describe several new phases of matter, such as Mott insulators, High-Tc superconductors, and spin liquid phases

    Properties of Reactive Oxygen Species by Quantum Monte Carlo

    Get PDF
    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of Chemistry, Biology and Atmospheric Science. Nevertheless, the electronic structure of such species is a challenge for ab-initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3N4N^3-N^4, where NN is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles

    Evidence for Stable Square Ice from Quantum Monte Carlo

    Full text link
    Recent experiments on ice formed by water under nanoconfinement provide evidence for a two-dimensional (2D) `square ice' phase. However, the interpretation of the experiments has been questioned and the stability of square ice has become a matter of debate. Partially this is because the simulation approaches employed so far (force fields and density functional theory) struggle to accurately describe the very small energy differences between the relevant phases. Here we report a study of 2D ice using an accurate wave-function based electronic structure approach, namely Diffusion Monte Carlo (DMC). We find that at relatively high pressure square ice is indeed the lowest enthalpy phase examined, supporting the initial experimental claim. Moreover, at lower pressures a `pentagonal ice' phase (not yet observed experimentally) has the lowest enthalpy, and at ambient pressure the `pentagonal ice' phase is degenerate with a `hexagonal ice' phase. Our DMC results also allow us to evaluate the accuracy of various density functional theory exchange correlation functionals and force field models, and in doing so we extend the understanding of how such methodologies perform to challenging 2D structures presenting dangling hydrogen bonds

    Finite temperature electronic simulations beyond the Born-Oppenheimer approximation

    Get PDF
    We introduce a general technique to compute finite temperature electronic properties by a novel covariant formulation of the electronic partition function. By using a rigorous variational upper bound to the free energy we are led to the evaluation of a partition function that can be computed stochastically by sampling electronic wave functions and atomic positions (assumed classical). In order to achieve this target we show that it is extremely important to consider the non trivial geometry of the space defined by the wave function ansatz. The method can be extended to any technique capable to provide an energy value over a given wave function ansatz depending on several variational parameters and atomic positions. In particular we can take into account electronic correlation, by using the standard variational quantum Monte Carlo method, that has been so far limited to zero temperature ground state properties. We show that our approximation reduces correctly to the standard Born-Oppenheimer (BO) one at zero temperature and to the correct high temperature limit. At large enough temperatures this method allows to improve the BO, providing lower values of the electronic free energy, because within this method it is possible to take into account the electron entropy. We test this new method on the simple hydrogen molecule, where at low temperature we recover the correct BO low temperature limit. Moreover, we show that the dissociation of the molecule is possible at a temperature much smaller than the BO prediction. Several extension of the proposed technique are also discussed, as for instance the calculation of critical (magnetic, superconducting) temperatures, or transition rates in chemical reactions

    Communication: Truncated non-bonded potentials can yield unphysical behavior in molecular dynamics simulations of interfaces

    Get PDF
    Non-bonded potentials are included in most force fields and therefore widely used in classical molecular dynamics simulations of materials and interfacial phenomena. It is commonplace to truncate these potentials for computational efficiency based on the assumption that errors are negligible for reasonable cutoffs or compensated for by adjusting other interaction parameters. Arising from a metadynamics study of the wetting transition of water on a solid substrate, we find that the influence of the cutoff is unexpectedly strong and can change the character of the wetting transition from continuous to first order by creating artificial metastable wetting states. Common cutoff corrections such as the use of a force switching function, a shifted potential, or a shifted force do not avoid this. Such a qualitative difference urges caution and suggests that using truncated non-bonded potentials can induce unphysical behavior that cannot be fully accounted for by adjusting other interaction parameters

    Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations

    Get PDF
    The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insight into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that in the last few decades have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state of the art computational methods, by reviewing simulations of e.g. ice nucleation or crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insight into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that in doing so the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that by improving (i.) existing interatomic potentials; and (ii.) currently available enhanced sampling methods, the community can move towards accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments

    Unraveling H2 chemisorption and physisorption on metal decorated graphene using quantum Monte Carlo

    Get PDF
    Molecular hydrogen has the potential to significantly reduce the use of carbon dioxide emitting energy processes. However, hydrogen gas storage is a major bottleneck for its large-scale use as current storage methods are energy intensive. Among different storage methods, physisorbing molecular hydrogen at ambient pressure and temperatures is a promising alternative—particularly in light of the advancements in tunable lightweight nanomaterials and high throughput screening methods. Nonetheless, understanding hydrogen adsorption in well-defined nanomaterials remains experimentally challenging and reference information is scarce despite the proliferation of works predicting hydrogen adsorption. We focus on Li, Na, Ca, and K, decorated graphene sheets as substrates for molecular hydrogen adsorption, and compute the most accurate adsorption energies available to date using quantum diffusion Monte Carlo (DMC). Building on our previous insights at the density functional theory (DFT) level, we find that a weak covalent chemisorption of molecular hydrogen, known as Kubas interaction, is feasible on Ca decorated graphene according to DMC, in agreement with DFT. This finding is in contrast to previous DMC predictions of the 4H2/Ca+ gas cluster (without graphene) where chemisorption is not favored. However, we find that the adsorption energy of hydrogen on metal decorated graphene according to a widely used DFT method is not fully consistent with DMC. The reference adsorption energies reported herein can be used to find better work-horse methods for application in large-scale modeling of hydrogen adsorption. Furthermore, the implications of this work affect strategies for finding suitable hydrogen storage materials and high-throughput methods

    Comparing interfacial dynamics in protein-protein complexes: an elastic network approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transient, or permanent, association of proteins to form organized complexes is one of the most common mechanisms of regulation of biological processes. Systematic physico-chemical studies of the binding interfaces have previously shown that a key mechanism for the formation/stabilization of dimers is the steric and chemical complementarity of the two semi-interfaces. The role of the fluctuation dynamics at the interface of the interacting subunits, although expectedly important, proved more elusive to characterize. The aim of the present computational study is to gain insight into salient dynamics-based aspects of protein-protein interfaces.</p> <p>Results</p> <p>The interface dynamics was characterized by means of an elastic network model for 22 representative dimers covering three main interface types. The three groups gather dimers sharing the same interface but with good (type I) or poor (type II) similarity of the overall fold, or dimers sharing only one of the semi-interfaces (type III). The set comprises obligate dimers, which are complexes for which no structural representative of the free form(s) is available. Considerations were accordingly limited to bound and unbound forms of the monomeric subunits of the dimers. We proceeded by first computing the mobility of amino acids at the interface of the bound forms and compare it with the mobility of (i) other surface amino acids (ii) interface amino acids in the unbound forms. In both cases different dynamic patterns were observed across interface types and depending on whether the interface belongs to an obligate or non-obligate complex.</p> <p>Conclusions</p> <p>The comparative investigation indicated that the mobility of amino acids at the dimeric interface is generally lower than for other amino acids at the protein surface. The change in interfacial mobility upon removing "in silico" the partner monomer (unbound form) was next found to be correlated with the interface type, size and obligate nature of the complex. In particular, going from the unbound to the bound forms, the interfacial mobility is noticeably reduced for dimers with type I interfaces, while it is largely unchanged for type II ones. The results suggest that these structurally- and biologically-different types of interfaces are stabilized by different balancing mechanisms between enthalpy and conformational entropy.</p
    corecore