4 research outputs found
Aluminum Complexes Bearing N‑Protected 2‑Amino- or 2‑Imino-Functionalized Pyrrolyl Ligands: Synthesis, Structure, and Catalysis for Preparation of Pyrrolyl-End-Functionalized Polyesters
Reactivity
of N-protected 2-amino- or 2-imino-functionalized pyrroles
with aluminum alkyls was investigated, resulting in the isolation
of a series of aluminum alkyl complexes. Treatment of 2-imino-functionalized
pyrrole with AlMe<sub>3</sub> produced only imino-coordinated aluminum
complex 1-Bn-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>4</sub>H<sub>3</sub>NAlMe<sub>3</sub> (<b>1</b>), while reactions of N-protected 2-amino-functionalized
pyrroles with aluminum alkyls produced the aluminum alkyl complexes
{[η<sup>1</sup>-μ-η<sup>1</sup>:η<sup>1</sup>-1-R<sub>1</sub>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH<sub>2</sub>)ÂC<sub>4</sub>H<sub>2</sub>N]ÂAlR}<sub>2</sub> (R<sub>1</sub> = Bn, R = Me (<b>2</b>); R<sub>1</sub> = Bn, R = Et (<b>3</b>); R<sub>1</sub> = R
= Me (<b>4</b>); R<sub>1</sub> = Me, R = Et (<b>5</b>)),
bearing 3-carbon bonded pyrrolyl ligands via C–H σ-bond
metathesis reaction. Further reactions of complexes <b>2</b>–<b>5</b> with a stoichiometric amount of isopropyl
alcohol (<sup><i>i</i></sup>PrOH) afforded the corresponding
aluminum alkoxide complexes [1-R<sub>1</sub>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH<sub>2</sub>)ÂC<sub>4</sub>H<sub>3</sub>NAlRÂ(μ-O<sup><i>i</i></sup>Pr)]<sub>2</sub> (R<sub>1</sub> = Bn, R = Me (<b>6</b>); R<sub>1</sub> = Bn, R = Et (<b>7</b>); R<sub>1</sub> = R = Me (<b>8</b>); R<sub>1</sub> = Me, R = Et (<b>9</b>)) through selective
cleavage of the Al–C (Pyr) bonds. The solid-state structures
of the aluminum complexes <b>1</b>–<b>6</b> and <b>8</b> were confirmed by an X-ray diffraction study. These aluminum
alkyl complexes exhibited notable activity toward the ring-opening
polymerization of ε-caprolactone and l-lactide in the
absence of alcohol. The end group analysis of the ε-CL oligomer
gave strong support that the polymerization proceeded via a coordination–insertion
mechanism involving a unique Al–C (Pyr) bond initiation, providing
pyrrolyl-end-functionalized polyesters
Synthesis and Characterization of Rare-Earth Metal Complexes Supported by 2‑Imino or Amino Appended Indolyl Ligands with Diverse Hapticities: Tunable Selective Catalysis for Isoprene Polymerization
The reaction of 2-(2,6-DippNHCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>NH (Dipp = 2,6-<sup><i>i</i></sup>PrC<sub>6</sub>H<sub>3</sub>, C<sub>8</sub>H<sub>5</sub>NH
= indolyl) with 1 equiv
of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>YbÂ(THF)<sub>2</sub> at room temperature generated mononuclear ytterbium complex <b>1</b> having the indolyl ligands in η<sup>1</sup>:η<sup>1</sup> mode with reduction of Yb<sup>3+</sup> to Yb<sup>2+</sup> and oxidation of the amino to imino group. In the case of Er and
Y, the reactions produced dinuclear complexes <b>2</b> and <b>3</b> having the indolyl ligands in μ-η<sup>2</sup>:η<sup>2</sup>:η<sup>1</sup> modes with the central metals.
When the rare-earth metal is dysprosium, the reaction afforded mixed
ligated dinuclear complex <b>4a</b> having indolyl ligands in
μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup> and μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup> modes with Dy, and its isomer <b>4b</b> having the
indolyl ligands only in μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup> modes with Dy. However, when the rare-earth
metal is Gd, the reaction only produced the mixed ligated dinuclear
gadolinium complex [(μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)ÂIndÂ(μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)ÂInd]Â[GdÂ(CH<sub>2</sub>SiMe<sub>3</sub>)Â(thf)]<sub>2</sub> (<b>5</b>), having indolyl ligands in μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup> and μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup> modes with Gd. In
addition, treatment of 2-(2,6-DippNHCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>NH with 1.25 equiv of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>GdÂ(THF)<sub>2</sub> produced the alkoxido-bridged trinuclear
gadolinium complex [(μ-η<sup>3</sup>:η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)ÂIndÂ(μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)ÂInd<i>-</i>(η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)ÂInd]-Gd<sub>3</sub>[(μ<sub>3</sub><i>-</i>OÂ(CH<sub>2</sub>)<sub>5</sub>SiMe<sub>3</sub>)Â(μ<sub>2</sub>-OÂ(CH<sub>2</sub>)<sub>5</sub>SiMe<sub>3</sub>)Â(thf)<sub>3</sub>] (<b>6</b>) having
indolyl ligands in η<sup>1</sup>:η<sup>1</sup>, μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>, and μ-η<sup>3</sup>:η<sup>2</sup>:η<sup>1</sup>:η <sup>1</sup> modes with metals, respectively. In complex <b>6</b>, sp<sup>2</sup> C–H activation is observed at the 7-indolyl position
producing unique 2-amido substituted indolyl-1,7-dianions having a
μ-η<sup>3</sup>:η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup> bonding modes with three metals. The OÂ(CH<sub>2</sub>)<sub>5</sub>SiMe<sub>3</sub> arises from the ring-opening
of THF by attack of CH<sub>2</sub>SiMe<sub>3</sub>. Moreover, when
2-(2,6-DippNHCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>NH was treated
with 1 equiv of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>SmÂ(THF)<sub>2</sub>, a dinuclear samarium complex [μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-DippNCH<sub>2</sub>)ÂInd]<sub>3</sub>Sm<sub>2</sub>(thf)<sub>3</sub> (<b>7</b>)
having a bridged indolyl ligand in μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities was isolated. All structures
of the complexes have been determined by X-ray crystallographic analyses.
Dinuclear alkyl complexes <b>2</b>–<b>5</b> have
been tested as isoprene polymerization initiators in the presence
of Al<sup><i>i</i></sup>Bu<sub>3</sub> and [Ph<sub>3</sub>C]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]. The regioselectivity
for isoprene polymerization is tunable from 1,4-<i>cis</i> (up to 93.5%) to 3,4- (up to 86.2%) selectivity by these catalysts
simply by adjusting the addition order of Al<sup><i>i</i></sup>Bu<sub>3</sub> and [Ph<sub>3</sub>C]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]
Indolyl-based Copper(I) Complex-Catalyzed Intermolecular Trifluoromethylazolation of Alkenes via Radical Process
Herein,
we synthesized and characterized a binuclear copper(I)
complex supported by the indolyl-based ligand. Employing this complex
as catalyst, we have developed a three-component intermolecular trifluoromethylazolation
of alkenes to deliver various trifluoromethylated azole derivatives.
The method features exclusive chemo- and regioselectivity, a broad
scope of alkenes and oxazoles, thiazoles, and good tolerance of functional
groups under mild conditions. Preliminary mechanistic studies support
a radical process for the transformation
Synthesis of Bis(NHC)-Based CNC-Pincer Rare-Earth-Metal Amido Complexes and Their Application for the Hydrophosphination of Heterocumulenes
The
bisÂ(NHC) (NHC = N-heterocyclic carbene)-based CNC-pincer rare-earth-metal
amido complexes <b>L</b>REÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (<b>L</b> = 4-CH<sub>3</sub>-2-{R-[NÂ(CH)<sub>2</sub>CN]}ÂC<sub>6</sub>H<sub>3</sub>]<sub>2</sub>N; <b>L</b><sup><b>2</b></sup>, R = CH<sub>3</sub>; <b>L</b><sup><b>3</b></sup>, R = CHÂ(CH<sub>3</sub>)<sub>2</sub>) were synthesized
and characterized, and their catalytic activities toward hydrophosphination
of heterocumulenes were developed. Reactions of bisÂ[2-(3-methylimidazolium)-4-methylphenyl]Âamine
diiodide (H<sub>3</sub><b>L</b><sup><b>2</b></sup>I<sub>2</sub>) or bisÂ[2-(3-isopropylimidazolium)-4-methylphenyl]Âamine diiodide
(H<sub>3</sub><b>L</b><sup><b>3</b></sup>I<sub>2</sub>) with 5 equiv of NaNÂ(SiMe<sub>3</sub>)<sub>2</sub> followed by treatment
with 1 equiv of RECl<sub>3</sub> in THF at −78 °C afforded
the bisÂ(NHC)-based CNC-pincer rare-earth-metal amido complexes <b>L</b>REÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (<b>L</b><sup><b>2</b></sup> = [4-CH<sub>3</sub>-2-{CH<sub>3</sub>-[NÂ(CH)<sub>2</sub>CN]}ÂC<sub>6</sub>H<sub>3</sub>]<sub>2</sub>N, RE = Y (<b>1</b>), Eu (<b>2</b>), Er (<b>3</b>); <b>L</b><sup><b>3</b></sup> = [4-CH<sub>3</sub>-2-{(CH<sub>3</sub>)<sub>2</sub>CH-[NÂ(CH)<sub>2</sub>CN]}ÂC<sub>6</sub>H<sub>3</sub>]<sub>2</sub>N, RE = Y (<b>4</b>), Er (<b>5</b>), Yb (<b>6</b>)). Complexes <b>4</b>–<b>6</b> can also be prepared
by stepwise reactions of H<sub>3</sub><b>L</b><sup><b>3</b></sup>I<sub>2</sub> with <i>n</i>-BuLi in THF followed
by reactions with [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>REÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub>. Stepwise reactions of H<sub>3</sub><b>L</b><sup><b>2</b></sup>I<sub>2</sub> with <i>n</i>-BuLi in THF followed
by treatment with [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>REÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub> generated the bisÂ(NHC)-based CNC-pincer rare-earth-metal
amido complexes <b>L</b><sup><b>2</b></sup>REÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (RE = Y (<b>1</b>), Er (<b>3</b>)) together with the fused-heterocyclic compound 3,8,9-trimethyl-8a,9-dihydro-8<i>H</i>-benzoÂ[4,5]ÂimidazoÂ[2′,1′:2,3]ÂimidazoÂ[1,2-<i>a</i>]ÂimidazoÂ[2,1-<i>c</i>]Âquinoxaline (<b>7</b>), which formed through carbene C–C and C–N coupling.
Attempts to prepare complexes of the type <b>L</b>REÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> by reaction of H<sub>3</sub><b>L</b><sup><b>3</b></sup>I<sub>2</sub> with [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>YbÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub> in
THF, however, afforded mixed complexes of the bisÂ(NHC)-based CNC-pincer
ytterbium complex <b>L</b><sup><b>3</b></sup>YbÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (<b>6</b>) and the unexpected
bisÂ(NHC)-based CNC-pincer monoamido ytterbium iodide <b>L</b><sup><b>3</b></sup>YbIÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>] (<b>8</b>). Investigation of the catalytic activity of complexes <b>1</b>–<b>6</b> and <b>8</b> indicated that
all complexes displayed high activity toward the addition of the phosphine
P–H bond to heterocumulenes, producing the corresponding phosphaguanidines,
phosphaureas, and phosphathioureas, which represents the first example
of bisÂ(NHC)-based CNC-pincer type rare-earth-metal amido complexes
as catalysts for the catalytic addition of the phosphine P–H
bond to heterocumulenes with high efficiency in the presence of a
low catalyst loading at room temperature